Publications by authors named "Cosimo Del Gratta"

Purpose: Recently, new MRI systems working at magnetic field below 10 mT (Very and Ultra Low Field regime) have been developed, showing improved T1-contrast in projected 2D maps (i.e. images without slice selection).

View Article and Find Full Text PDF

The WHO classification since 2016 confirms the importance of integrating molecular diagnosis for prognosis and treatment decisions of adult-type diffuse gliomas. This motivates the development of non-invasive diagnostic methods, in particular MRI, to predict molecular subtypes of gliomas before surgery. At present, this development has been focused on deep-learning (DL)-based predictive models, mainly with conventional MRI (cMRI), despite recent studies suggesting multi-shell diffusion MRI (dMRI) offers complementary information to cMRI for molecular subtyping.

View Article and Find Full Text PDF

Despite advances in tumor treatment, the inconsistent response is a major challenge among glioblastoma multiform (GBM) that lead to different survival time. Our aim was to integrate multimodal MRI with non-supervised and supervised machine learning methods to predict GBM patients' survival time. To this end, we identified different compartments of the tumor and extracted their features.

View Article and Find Full Text PDF

(1) The effects of intensive mental training based on meditation on the functional and structural organization of the human brain have been addressed by several neuroscientific studies. However, how large-scale connectivity patterns are affected by long-term practice of the main forms of meditation, Focused Attention (FA) and Open Monitoring (OM), as well as by aging, has not yet been elucidated. (2) Using functional Magnetic Resonance Imaging (fMRI) and multivariate pattern analysis, we investigated the impact of meditation expertise and age on functional connectivity patterns in large-scale brain networks during different meditation styles in long-term meditators.

View Article and Find Full Text PDF

Objective: To evaluate: (a) the specific effect that the demyelination and axonal loss have on the DW signal, and (b) the impact of the sequence parameters on the sensitivity to damage of two clinically feasible DWI techniques, i.e. DKI and NODDI.

View Article and Find Full Text PDF

Background: This study addresses an ongoing debate, i.e. whether microstates have a relation to specific oscillations or frequency bands.

View Article and Find Full Text PDF

The rapidly progressing science of meditation has led to insights about the neural correlates of focused attention meditation (FAM), open monitoring meditation (OMM), compassion meditation (CM) and loving kindness meditation (LKM), in terms of states and traits. However, a unified theoretical understanding of the brain mechanisms involved in meditation-related functions, including mindfulness, is lacking. After reviewing the main forms of meditation and their relationships, the major brain networks and brain states, as well as influential theoretical views of consciousness, we outline a Brain Theory of Meditation (BTM).

View Article and Find Full Text PDF

The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization.

View Article and Find Full Text PDF

The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e.

View Article and Find Full Text PDF

Objective: Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework.

Approach: We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation.

View Article and Find Full Text PDF

When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus.

View Article and Find Full Text PDF

Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus.

View Article and Find Full Text PDF

Objective: Behavioral deficits in sustained attention have been reported during both acute and euthymic phases of type I bipolar disorder (BD-I) and also in non-affected relatives of bipolar disorder (BD) patients. In particular, selective failure in target recognition was proposed as a potential trait marker for BD, but there are few studies exploring the neural correlates. The aim of the present study was to analyze the behavioral and functional magnetic resonance imaging (fMRI) response of euthymic BD-I patients and non-affected relatives during a sustained attention task.

View Article and Find Full Text PDF

Introduction: Despite the interest for the brain correlates of male sexual arousal, few studies investigated neural mechanisms underlying psychogenic erectile dysfunction (ED). Although these studies showed several brain regions active in ED patients during visual erotic stimulation, the dynamics of inhibition of sexual response is still unclear.

Aim: This study investigated the dynamics of brain regions involved in the psychogenic ED.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the effects induced by an exposure to a GSM signal (Global System for Mobile Communication) on brain BOLD (blood-oxygen-level dependent) response, as well as its time course while performing a Go-NoGo task.

Methods: Participants were tested twice, once in presence of a "real" exposure to GSM radiofrequency signal and once under a "sham" exposure (placebo condition). BOLD response of active brain areas and reaction times (RTs) while performing the task were measured both before and after the exposure.

View Article and Find Full Text PDF

Tactile shape discrimination involves frontal other than somatosensory cortex (Palva et al., 2005 [48]), but it is unclear if this frontal activity is related to exploratory concomitants. In this study, we investigated topographical details of prefrontal, premotor, and parietal areas during passive tactile recognition of 2D geometrical shapes in conditions avoiding exploratory movements.

View Article and Find Full Text PDF

It is well known that primary and non-primary areas of human somatosensory cortex are involved in the processing of adequate deviant/rare stimuli and omission of frequent stimuli. However, the relative weight and interaction of these variables is poorly known. This functional magnetic resonance imaging (fMRI) study tested the hypothesis that somatosensory stimulus processing and attention especially interact in non-primary somatosensory areas including secondary somatosensory cortex (SII) and insula.

View Article and Find Full Text PDF

Meditation refers to a family of complex emotional and attentional regulatory practices, which can be classified into two main styles - focused attention (FA) and open monitoring (OM) - involving different attentional, cognitive monitoring and awareness processes. In a functional magnetic resonance study we originally characterized and contrasted FA and OM meditation forms within the same experiment, by an integrated FA-OM design. Theravada Buddhist monks, expert in both FA and OM meditation forms, and lay novices with 10 days of meditation practice, participated in the experiment.

View Article and Find Full Text PDF

The somatic sensation of the tongue is necessary for daily life, but it is difficult to know the underlying neural mechanisms. In particular, because of the vomiting reflex and several morphological problems, no neuroimaging studies have examined somatosensory processing by stimulating the posterior part of the tongue, except for two magnetoencephalographic studies (Sakamoto et al., 2008a,b).

View Article and Find Full Text PDF

The aim of this functional magnetic resonance imaging (fMRI) study was to evaluate negative blood oxygen level-dependent (BOLD) signals during voluntary tongue movement. Deactivated (Negative BOLD) regions included the posterior parietal cortex (PPC), precuneus, and middle temporal gyrus. Activated (Positive BOLD) regions included the primary somatosensory-motor area (SMI), inferior parietal lobule, medial frontal gyrus, superior temporal gyrus, insula, lentiform nucleus, and thalamus.

View Article and Find Full Text PDF

The act of listening to speech activates a large network of brain areas. In the present work, a novel data-driven technique (the combination of independent component analysis and Granger causality) was used to extract brain network dynamics from an fMRI study of passive listening to Words, Pseudo-Words, and Reverse-played words. Using this method we show the functional connectivity modulations among classical language regions (Broca's and Wernicke's areas) and inferior parietal, somatosensory, and motor areas and right cerebellum.

View Article and Find Full Text PDF

More intelligent persons (high IQ) typically present a higher cortical activity during tasks requiring the encoding of visuo-spatial information, namely higher alpha (about 10 Hz) event-related desynchronization (ERD; Doppelmayr et al., 2005). The opposite is true ("neural efficiency") during the retrieval of the encoded information, as revealed by both lower alpha ERD and/or lower theta (about 5 Hz) event-related synchronization (ERS; Grabner et al.

View Article and Find Full Text PDF

Attention deficits are common in schizophrenics and sometimes reported in their healthy relatives. The aim of this study was to analyse the behavioural performance and the brain activation of healthy siblings of schizophrenic patients during a sustained-attention task. Eleven healthy siblings of schizophrenic patients and eleven matched controls performed a Continuous Performance Test (CPT), during 1.

View Article and Find Full Text PDF

This review introduces readers to fundamentals of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI). EEG and MEG signals are mainly produced by postsynaptic ionic currents of synchronically active pyramidal cortical neurons. These signals reflect the integrative information processing of neurons representing the output of cortical neural modules.

View Article and Find Full Text PDF

Inhibiting inappropriate behavior and thoughts in the current context is an essential ability for humans, but the neural mechanisms for response inhibitory processing are a matter of continuous debate. The aim of this event-related functional magnetic resonance imaging (fMRI) study was to evaluate the negative blood oxygen level dependent (BOLD) effect on inhibitory processing during go/no-go paradigms. Fifteen subjects performed two different types of somatosensory go/no-go paradigm: (1) button press and (2) count.

View Article and Find Full Text PDF