Publications by authors named "Cosette Rivera-Cruz"

Mesenchymal stromal cells (MSC) are envisioned as a potential cellular vehicle for targeted cancer therapies due to their tumor tropism and immune permissiveness. An obstacle in their use is the duality in their interactions within tumors, rendering them pro-tumorigenic or anti-tumorigenic, in a context dependent manner. MSC preconditioning, or priming, has been proposed as a strategy for directing the effector properties of MSC at tumor sites.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity.

View Article and Find Full Text PDF

An emerging approach in treating skeletal malignancies utilizes osteoimmunology to investigate new multifunctional immune-stimulatory agents that can simultaneously combat tumor growth and promote bone repair. We have hypothesized that cytokine Interleukin-27 (IL-27) is an excellent candidate biologic to help rebalance the prostate tumor cells and bone cell environment. In this work, we examined the proof of principle for a short, secreted luciferase (Nanoluc or Nluc) fusion with IL-27 to produce a novel cytokine-based biologic (Nluc-27), whereby we examined its efficacy in vitro in reducing prostate tumor growth and rebalancing bone cell proliferation and differentiation.

View Article and Find Full Text PDF

Some cytokines can reengineer anti-tumor immunity to modify the tumor micro-environment. Interleukin-27 (IL-27) can partially reduce tumor growth in several animal models, including prostate cancer. We hypothesized that addition of IL-18, which can induce the proliferation of several immune effector cells through inducing IFNγ could synergize with IL-27 to enhance tumor growth control.

View Article and Find Full Text PDF

Cisplatin is widely used to treat different types of cancer, but its severe side effects are the major disadvantage of this treatment. Therefore, other metals are currently the subject of research in the rational development of anticancer drugs, such as copper, that has been demonstrated to be promising in this scenario. Here, we evaluated the effects of two novel copper complexes against breast cancer cell lines, and also examined the influence of overexpressing copper transporter 1 (CTR1) on the cytotoxicity of these complexes.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy, particularly for their antitumor effects. This cell population can be isolated from multiple tissue sources and also display an innate ability to home to areas of inflammation, such as tumors. Upon entry into the tumor microenvironment niche, MSCs promote or inhibit tumor progression by various mechanisms, largely through the release of soluble factors.

View Article and Find Full Text PDF