Purpose: The success of checkpoint blockade against glioblastoma (GBM) has been disappointing. Anti-PD-1 strategies may be hampered by severe T-cell exhaustion. We sought to develop a strategy that might license new efficacy for checkpoint blockade in GBM.
View Article and Find Full Text PDFBrain tumors present unique therapeutic challenges and they include glioblastoma (GBM) and metastases from cancers of other organs. Current treatment options are limited and include surgical resection, radiation therapy, laser interstitial thermal therapy and chemotherapy. Although much research has been done on the development of immune-based treatment platforms, only limited success has been demonstrated.
View Article and Find Full Text PDFIn the version of this article originally published, the figure callout in this sentence was incorrect: "Furthermore, in S1P1-KI mice themselves, whereas PD-1 blockade was ineffectual as monotherapy, the effects of 4-1BB agonism and checkpoint blockade proved additive, with the combination prolonging median survival and producing a 50% long-term survival rate (Fig. 6f)." The callout should have been to Supplementary Fig.
View Article and Find Full Text PDFBackground: Laser ablation (LA) is used as an upfront treatment in patients with deep seated newly diagnosed Glioblastoma (nGBM).
Objective: To evaluate the outcomes of LA in patients with nGBM and compare them with a matched biopsy-only cohort.
Methods: Twenty-four nGBM patients underwent upfront LA at Cleveland clinic, Washington University in St.
T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell-deficient lymphoid organs.
View Article and Find Full Text PDFT-cell dysfunction is a hallmark of glioblastoma (GBM). Although anergy and tolerance have been well characterized, T-cell exhaustion remains relatively unexplored. Exhaustion, characterized in part by the upregulation of multiple immune checkpoints, is a known contributor to failures amid immune checkpoint blockade, a strategy that has lacked success thus far in GBM.
View Article and Find Full Text PDF