The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes.
View Article and Find Full Text PDFWe report a role for long-distance retrograde neurotrophin signaling in the establishment of synapses in the sympathetic nervous system. Target-derived NGF is both necessary and sufficient for formation of postsynaptic specializations on dendrites of sympathetic neurons. This, in turn, is a prerequisite for formation of presynaptic specializations, but not preganglionic axonal ingrowth from the spinal cord into sympathetic ganglia.
View Article and Find Full Text PDFGenome-wide screens were performed to identify transmembrane proteins that mediate axonal growth, guidance and target field innervation of somatosensory neurons. One gene, Linx (alias Islr2), encoding a leucine-rich repeat and immunoglobulin (LIG) family protein, is expressed in a subset of developing sensory and motor neurons. Domain and genomic structures of Linx and other LIG family members suggest that they are evolutionarily related to Trk receptor tyrosine kinases (RTKs).
View Article and Find Full Text PDFChanges in astrocyte shape and function are known to occur in association with human immunodeficiency virus (HIV) dementia (HIVD). However, the causes and consequences of such changes are not completely understood. In vitro data suggest that changes in the expression of aquaporin 4 (AQP4), the aquaporin subtype expressed by astrocytes, can significantly influence cell shape and physiology.
View Article and Find Full Text PDFBackground: Before the introduction of combination antiretroviral therapy (CART), neurological disease correlated with cerebrospinal fluid (CSF) levels of human immunodeficiency virus (HIV) RNA.
Objective: To investigate the relationships among HIV RNA levels, immune activation markers, and neurological status in patients receiving CART.
Design: Multicenter cohort study.
Recent studies suggest that the inducible isoform of cyclooxygenase, COX-2, promotes motor neuron loss in rodent models of ALS. We investigated the effects of PGE2, a principal downstream prostaglandin product of COX-2 activity, on motor neuron survival in an organotypic culture model of ALS. We find that PGE2 paradoxically protects motor neurons at physiological concentrations in this model.
View Article and Find Full Text PDFObjective: The relationships between neurometabolites and macrophage chemoattractant protein (MCP-1) in serum and cerebrospinal fluid (CSF) were evaluated in HIV patients before and after antiretroviral treatment.
Design: Prior studies found higher CSF MCP-1 levels in patients with HIV-associated dementia compared to those in neuroasymptomatic. We hypothesized that CSF MCP-1 levels would correlate inversely to neuronal metabolites [including N-acetyl compounds, glutamate+glutamine, as assessed by principal component analyses (PCA)] and positively to glial metabolites (including myo-inositol and choline compounds).
Human immunodeficiency virus (HIV) dementia (HIVD) is associated with an increase in the number of activated monocytes within the central nervous system (CNS), a pathological feature that may be more remarkable in the setting of superimposed substance abuse. Monocytes may transport HIV to the brain, and, moreover, activated and/or infected monocytes have been shown to release a number of potent neurotoxins. Although the mechanisms responsible for the increase in the CNS ingress of monocytes are multiple, blood-brain barrier (BBB)-degrading matrix metalloproteinases (MMPs) are likely to play an important role.
View Article and Find Full Text PDFSeveral studies have demonstrated that matrix metalloproteinases (MMPs) are cytotoxic. The responsible mechanisms, however, are not well understood. MMPs may promote cytotoxicity through their ability to disrupt or degrade matrix proteins that support cell survival, and MMPs may also cleave substrates to generate molecules that stimulate cell death.
View Article and Find Full Text PDFThe matrix metalloproteinases (MMPs) are a family of structurally related metalloendopeptidases so named due to their propensity to target extracellular matrix (ECM) proteins. Accumulating evidence, however, suggests that these proteases cleave numerous non-ECM substrates including enzymes and cell surface receptors. MMPs may also bind to cell surface receptors, though such binding has typically been thought to mediate internalization and degradation of the bound protease.
View Article and Find Full Text PDF