Graphene-like 2D coordination polymers (GCPs) have been of central research interest in recent decades with significant impact in many fields. According to classical coordination chemistry, Cu(II) can adopt the dsp hybridization to form square planar coordination geometry, but not Cu(I); this is why so far, there has been few 2D layered structures synthesized from Cu(I) precursors. Herein a pair of isostructural GCPs synthesized by the coordination of benzenehexathiol (BHT) ligands with Cu(I) and Cu(II) ions, respectively, is reported.
View Article and Find Full Text PDFHerein, we have successfully synthesized binary AgSe, composite Ag:AgSe, and ternary Cu:AgSe through an ambient aqueous-solution-based approach in a one-pot reaction at room temperature and atmospheric pressure without involving high-temperature heating, multiple-processes treatment, and organic solvents/surfactants. Effective controllability over phases and compositions/components are demonstrated with feasibility for large-scale production through an exquisite alteration in reaction parameters especially pH for enhancing and understanding thermoelectric properties. Thermoelectric reaches 0.
View Article and Find Full Text PDFWe report the synthesis and optical and electronic properties of a one-dimensional sulfoxonium-based hybrid metal halide in an orthorhombic crystal system with a Pnma space group. To provide direct insights, a method is developed to calculate tolerance factors with the ionic radii of non-spherical cations from X-ray crystallographic data.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
There is a huge interest in developing superrepellent surfaces for antifouling and heat-transfer applications. To characterize the wetting properties of such surfaces, the most common approach is to place a millimetric-sized droplet and measure its contact angles. The adhesion and friction forces can then be inferred indirectly using Furmidge's relation.
View Article and Find Full Text PDFCocatalysts, when loaded onto a water splitting photocatalyst, accelerate the gas evolution reaction and improve the efficiency of the photocatalyst. In this paper, we report that the efficiency of the photocatalyst is enhanced using an amorphous cobalt oxide cocatalyst. The WO3 film, when loaded with amorphous or nanocrystalline Co3O4, shows an improvement of up to 40% in photocurrent generation and 34% in hydrogen gas evolution.
View Article and Find Full Text PDFThis paper demonstrates an optimized fabrication of amorphous Ru nanoparticles through annealing at various temperatures ranging from 150 to 700 °C, which are used as water oxidation catalyst for effective electrochemical water splitting under a low overpotential of less than 300 mV. The amorphous Ru nanoparticles with short-range ordered structure exhibit an optimal and stable electrocatalytic activity after annealing at 250 °C. Interestingly, a small quantity of such Ru nanoparticles in a thin film on fluorine-doped tin oxide glass is also effectively driven by a conventional crystalline silicon solar cell that has excellent capability for harvesting visible light.
View Article and Find Full Text PDFHerein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu(+)-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au(3+) at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2014
Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol-gel spin-coating process. Sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control.
View Article and Find Full Text PDFPhotochemical deposition of Co and Ni based oxygen evolution catalysts on hematite nanorods cathodically shifted the onset potential of photocurrent near to the flat band potential of hematite. A 9.5 fold enhancement in the photocurrent density at 0.
View Article and Find Full Text PDF