In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth.
View Article and Find Full Text PDFThe nucleus is physically linked to the cytoskeleton, adhesions, and extracellular matrix-all of which sustain forces, but their relationships to DNA damage are obscure. We show that nuclear rupture with cytoplasmic mislocalization of multiple DNA repair factors correlates with high nuclear curvature imposed by an external probe or by cell attachment to either aligned collagen fibers or stiff matrix. Mislocalization is greatly enhanced by lamin A depletion, requires hours for nuclear reentry, and correlates with an increase in pan-nucleoplasmic foci of the DNA damage marker γH2AX.
View Article and Find Full Text PDFMany different types of soft and solid tumors have now been sequenced, and meta-analyses suggest that genomic variation across tumors scales with the stiffness of the tumors' tissues of origin. The opinion expressed here is based on a review of current genomics data, and it considers multiple 'mechanogenomics' mechanisms to potentially explain this scaling of mutation rate with tissue stiffness. Since stiff solid tissues have higher density of fibrous collagen matrix, which should decrease tissue porosity, cancer cell proliferation could be affected and so could invasion into stiff tissues as the nucleus is squeezed sufficiently to enhance DNA damage.
View Article and Find Full Text PDFMarrow-derived macrophages are highly phagocytic, but whether they can also traffic into solid tumors and engulf cancer cells is questionable, given the well-known limitations of tumor-associated macrophages (TAMs). Here, SIRPα on macrophages from mouse and human marrow was inhibited to block recognition of its ligand, the "marker of self" CD47 on all other cells. These macrophages were then systemically injected into mice with fluorescent human tumors that had been antibody targeted.
View Article and Find Full Text PDFLentiviruses infect many cell types and are now widely used for gene delivery , but uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress "Marker of Self" CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show "hCD47-Lenti" display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA.
View Article and Find Full Text PDFBiological screening of one-bead, one-compound (OBOC) combinatorial peptide libraries is routinely carried out with the peptide remaining bound to the resin bead during screening. After a hit is identified, the bead is isolated, the peptide is cleaved from the bead, and its sequence is determined. We have developed a new technique for cleavage of peptides from resin beads whereby exposure of a 4-hydroxymethyl benzoic acid (HMBA)-linked peptide to high-pressure ammonia gas led to efficient cleavage in as little as 5min.
View Article and Find Full Text PDF