Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that an androgen-dependent effect of exercise following injury can be neuroprotective against this dendritic atrophy. In this study, we explored where the necessary site of androgen action is for exercise-driven neuroprotective effects on induced dendritic atrophy.
View Article and Find Full Text PDFNeural Regen Res
August 2020
Injuries to spinal motoneurons manifest in a variety of forms, including damage to peripheral axons, neurodegenerative disease, or direct insult centrally. Such injuries produce a variety of negative structural and functional changes in both the directly affected and neighboring motoneurons. Exercise is a relatively simple behavioral intervention that has been demonstrated to protect against, and accelerate recovery from, these negative changes.
View Article and Find Full Text PDFNeurorehabil Neural Repair
August 2019
. Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that treatment with androgens can be neuroprotective against this dendritic atrophy.
View Article and Find Full Text PDFPartial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone protects motoneurons from induced dendritic atrophy. We explored a potential mechanism for this induced atrophy and protection by testosterone, examining the microglial response to partial depletion of motoneurons. Motoneurons innervating the vastus medialis muscles of adult male rats were killed by intramuscular injection of cholera toxin-conjugated saporin; some saporin-injected rats were treated with testosterone.
View Article and Find Full Text PDFPartial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion.
View Article and Find Full Text PDF