Publications by authors named "Cory B Giles"

Background: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown.

Methods: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events.

Results: Endothelial ablation of leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation.

View Article and Find Full Text PDF

High-throughput sequencing has created an exponential increase in the amount of gene expression data, much of which is freely, publicly available in repositories such as NCBI's Gene Expression Omnibus (GEO). Querying this data for patterns such as similarity and distance, however, becomes increasingly challenging as the total amount of data increases. Furthermore, vectorization of the data is commonly required in Artificial Intelligence and Machine Learning (AI/ML) approaches.

View Article and Find Full Text PDF

DNA methylation data has been used to make "epigenetic clocks" which attempt to measure chronological and biological aging. These models rely on data derived from bisulfite-based measurements, which exploit a semi-selective deamination and a genomic reference to determine methylation states. Here, we demonstrate how another hallmark of aging, genomic instability, influences methylation measurements in both bisulfite sequencing and methylation arrays.

View Article and Find Full Text PDF

Background: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury.

Methods: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury.

View Article and Find Full Text PDF

Epigenetic alterations are a hallmark of aging and age-related diseases. Computational models using DNA methylation data can create "epigenetic clocks" which are proposed to reflect "biological" aging. Thus, it is important to understand the relationship between predictive clock sites and aging biology.

View Article and Find Full Text PDF

The effect of calorie restriction (CR) on the microbiome, fecal metabolome, and colon transcriptome of adult and old male mice was compared. Life-long CR increased microbial diversity and the Bacteroidetes/Firmicutes ratio and prevented the age-related changes in the microbiota, shifting it to a younger microbial and fecal metabolite profile in both C57BL/6JN and B6D2F1 mice. Old mice fed CR were enriched in the , and families.

View Article and Find Full Text PDF

Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression.

View Article and Find Full Text PDF

Background: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance.

Results: We propose a novel framework for comparing microbial shifts between conditions.

View Article and Find Full Text PDF

There is strong evidence that obesity has deleterious effects on cognitive function of older adults. Previous preclinical studies demonstrate that obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption, promoting neuroinflammation and oxidative stress. To test the hypothesis that synergistic effects of obesity and aging on inflammatory processes exert deleterious effects on hippocampal function, young and aged C57BL/6 mice were rendered obese by chronic feeding of a high-fat diet followed by assessment of learning and memory function, measurement of hippocampal long-term potentiation (LTP), assessment of changes in hippocampal expression of genes relevant for synaptic function and determination of synaptic density.

View Article and Find Full Text PDF

Ageing is the main risk factor for the development of cardiovascular diseases. A central mechanism by which ageing promotes vascular pathologies is compromising endothelial health. The age-related attenuation of endothelium-dependent dilator responses (endothelial dysfunction) associated with impairment of angiogenic processes and the subsequent pathological remodelling of the microcirculation contribute to compromised tissue perfusion and exacerbate functional decline in older individuals.

View Article and Find Full Text PDF

Background: NCBI's Gene Expression Omnibus (GEO) is a rich community resource containing millions of gene expression experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata) is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus, classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and tissue of origin is not feasible without assigning labels to the experiments.

View Article and Find Full Text PDF

DNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age-related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome-wide analyses of age-related methylation changes have considered the factor of sex in a controlled animal model.

View Article and Find Full Text PDF

Scientific Data Analysis Resources (SDARs) such as bioinformatics programs, web servers and databases are integral to modern science, but previous studies have shown that the Uniform Resource Locators (URLs) linking to them decay in a time-dependent manner, with ∼27% decayed to date. Because SDARs are overrepresented among science's most cited papers over the past 20 years, loss of widely used SDARs could be particularly disruptive to scientific research. We identified URLs in MEDLINE abstracts and used crowdsourcing to identify which reported the creation of SDARs.

View Article and Find Full Text PDF

Clinical and experimental studies show that aging exacerbates hypertension-induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin-like growth factor 1 (IGF-1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF-1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver-specific knockdown of IGF-1 (Igf1  + TBG-Cre-AAV8) and control mice by angiotensin II plus l-NAME treatment.

View Article and Find Full Text PDF

Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive.

View Article and Find Full Text PDF

Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype.

View Article and Find Full Text PDF

Background: Changes to the epigenome with aging, and DNA modifications in particular, have been proposed as a central regulator of the aging process, a predictor of mortality, and a contributor to the pathogenesis of age-related diseases. In the central nervous system, control of learning and memory, neurogenesis, and plasticity require changes in cytosine methylation and hydroxymethylation. Although genome-wide decreases in methylation with aging are often reported as scientific dogma, primary research reports describe decreases, increases, or lack of change in methylation and hydroxymethylation and their principle regulators, DNA methyltransferases and ten-eleven translocation dioxygenases in the hippocampus.

View Article and Find Full Text PDF

Motivation: The growing amount of regulatory data from the ENCODE, Roadmap Epigenomics and other consortia provides a wealth of opportunities to investigate the functional impact of single nucleotide polymorphisms (SNPs). Yet, given the large number of regulatory datasets, researchers are posed with a challenge of how to efficiently utilize them to interpret the functional impact of SNP sets.

Results: We developed the GenomeRunner web server to automate systematic statistical analysis of SNP sets within a regulatory context.

View Article and Find Full Text PDF

Epigenetic regulation through DNA methylation (5mC) plays an important role in development, aging, and a variety of diseases. Genome-wide studies of base- and strand-specific 5mC are limited by the extensive sequencing required. Targeting bisulfite sequencing to specific genomic regions through sequence capture with complimentary oligonucleotide probes retains the advantages of bisulfite sequencing while focusing sequencing reads on regions of interest, enables analysis of more samples by decreasing the amount of sequence required per sample, and provides base- and strand-specific absolute quantitation of CG and non-CG methylation levels.

View Article and Find Full Text PDF

The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported.

View Article and Find Full Text PDF

Clearing senescent cells extends healthspan in mice. Using a hypothesis-driven bioinformatics-based approach, we recently identified pro-survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells.

View Article and Find Full Text PDF

Background: Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments.

View Article and Find Full Text PDF

Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME.

View Article and Find Full Text PDF

Impairment of hippocampal-dependent spatial learning and memory with aging affects a large segment of the aged population. Hippocampal subregions (CA1, CA3, and DG) have been previously reported to express both common and specific morphological, functional, and gene/protein alterations with aging and cognitive decline. To comprehensively assess gene expression with aging and cognitive decline, transcriptomic analysis of CA1, CA3, and DG was conducted using Adult (12M) and Aged (26M) F344xBN rats behaviorally characterized by Morris water maze performance.

View Article and Find Full Text PDF

In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR.

View Article and Find Full Text PDF