Publications by authors named "Cory Allen"

The optimal allocation of land for energy generation is of emergent concern due to an increasing demand for renewable power capacity, land scarcity, and the diminishing supply of water. Therefore, economically, socially and environmentally optimal design of new energy infrastructure systems require the holistic consideration of water, food and land resources. Despite huge efforts on the modeling and optimization of renewable energy systems, studies navigating the multi-faceted and interconnected food-energy-water-land nexus space, identifying opportunities for beneficial improvement, and systematically exploring interactions and trade-offs are still limited.

View Article and Find Full Text PDF

Results from studies into the cognitive effects of alcohol hangover have been mixed. They also present methodological challenges, often relying on self-reports of alcohol consumption leading to hangover. The current study measured Breath Alcohol Concentration (BAC, which was obtained via breathalyzer) and self-reported drinking behavior during a night out.

View Article and Find Full Text PDF

Helicobacter pylori neutrophil-activating protein (NAP) is a major virulence factor and powerful inducer of inflammatory reaction and Th1-polarized immune response. Here, we evaluated the therapeutic efficacy of measles virus (MV) strains engineered to express secretory NAP forms against metastatic breast cancer. Recombinant viruses encoding secretory NAP forms (MV-lambda-NAP and MV-s-NAP) efficiently infect and destroy breast cancer cells by cell-to-cell viral spread and large syncytia formation independently of hormone receptor status.

View Article and Find Full Text PDF

Engineered measles virus (MV) strains deriving from the vaccine lineage represent a promising oncolytic platform and are currently being tested in phase I trials. In this study, we have demonstrated that MV strains genetically engineered to express the human sodium iodide symporter (NIS) have significant antitumor activity against glioma lines and orthotopic xenografts; this compares favorably with the MV strain expressing the human carcinoembryonic antigen, which is currently in clinical testing. Expression of NIS protein in infected cells results in effective concentration of radioactive iodine, which allows for in vivo monitoring of localization of MV-NIS infection by measuring uptake of (123)I or (99m)Tc.

View Article and Find Full Text PDF

Despite significant advances in recent years, treatment of metastatic malignancies remains a significant challenge. There is an urgent need for development of novel therapeutic approaches. Virotherapy approaches have considerable potential, and among them measles virus (MV) vaccine strains have emerged as a promising oncolytic platform.

View Article and Find Full Text PDF

Breast cancer is the second leading cause of malignant effusions in cancer patients. Pleural effusion indicates incurable disease with limited palliative treatment options and poor outcome. Here, we demonstrate the therapeutic efficacy of measles virus (MV) vaccine strain derivative against malignant pleural effusion in an MDA-MB-231 xenograft model of advanced breast cancer.

View Article and Find Full Text PDF

Prostate cancer cells overexpress the measles virus (MV) receptor CD46. Herein, we evaluated the antitumor activity of an oncolytic derivative of the MV Edmonston (MV-Edm) vaccine strain engineered to express the human sodium iodide symporter (NIS; MV-NIS virus). MV-NIS showed significant cytopathic effect (CPE) against prostate cancer cell lines in vitro.

View Article and Find Full Text PDF

Background: No curative therapy is currently available for locally advanced or metastatic prostate cancer. Oncolytic viruses represent a novel class of therapeutic agents that demonstrates no cross-resistance with existing approaches and can therefore be combined with conventional treatment modalities. Measles virus strains deriving from the Edmonston (MV-Edm) vaccine strain have shown considerable oncolytic activity against a variety of solid tumers and hematologic malignancies.

View Article and Find Full Text PDF

Hypothesis: Intracranial vestibular schwannoma xenografts can be successfully established and followed with bioluminescent imaging (BLI).

Background: Transgenic and xenograft mouse models of vestibular schwannomas have been previously reported in the literature. However, none of these models replicate the intracranial location of these tumors to reflect the human disease.

View Article and Find Full Text PDF

The majority of glioblastoma multiforme (GBM) tumors (80%) overexpress interleukin-13 receptor α2 (IL-13Rα2), but there is no expression of IL-13Rα2 in normal brain. Vaccine strains of measles virus have significant antitumor activity against gliomas. We tested the hypothesis that measles virus entry could be retargeted via the IL-13Rα2.

View Article and Find Full Text PDF

The majority of glioblastoma multiforme (GBM) tumors (80%) overexpress interleukin-13 receptor alpha2 (IL-13Ralpha2), but there is no expression of IL-13Ralpha2 in normal brain. Vaccine strains of measles virus have significant antitumor activity against gliomas. We tested the hypothesis that measles virus entry could be retargeted via the IL-13Ralpha2.

View Article and Find Full Text PDF

Background: Recurrent gliomas have a dismal outcome despite use of multimodality treatment including surgery, radiation therapy and chemotherapy.

Objective: In this article the authors discuss potential applications of oncolytic measles virus strains as novel antitumor agents in the treatment of gliomas.

Methods: Important aspects of measles virus development as an anticancer therapeutic agent including engineering, retargeting and combination studies with other therapeutic modalities are discussed.

View Article and Find Full Text PDF

Congenital factor VII (FVII) deficiency is an autosomal recessive bleeding disorder with variable phenotypic correlation between FVII activity and bleeding risk. We report a novel mutation of the FVII gene that creates the amino acid change Ser 103 to Gly, which resulted in severe FVII deficiency with reduced FVII antigen. This mutation in the heterozygous form was also present in a mildly affected, unrelated patient.

View Article and Find Full Text PDF

A retargeted measles virus strain MV-GFP-H(AA)-scEGFR was generated by engineering the MV-NSe Edmonston vaccine strain to incorporate both CD46 (Y481A) and signaling lymphocyte activation molecule (SLAM) (R533A) ablating mutations in the hemagglutinin protein in combination with the display of a single-chain antibody against epidermal growth factor receptor (EGFR) at the C terminus of hemagglutinin. The unmodified MV-GFP virus was used as a positive control. Specificity of the EGFR retargeted virus was demonstrated in non-permissive Chinese hamster ovary (CHO) cells stably transfected to express either the natural receptors CD46 or SLAM or the target receptors EGFR and EGFRvIII.

View Article and Find Full Text PDF

Among the best-characterized genetic alterations in gliomas is the amplification of the epidermal growth factor receptor (EGFR) gene, present in approximately 40% of glioblastoma multiforme, and frequently associated with the EGFRvIII gene rearrangement. We have previously shown that attenuated vaccine strains of measles virus have potent antitumor activity against gliomas, and identified H protein mutations, which ablate recognition of the natural measles virus receptors CD46 and SLAM. Retargeted recombinant viruses were generated from the measles Edmonston-NSe vaccine strain displaying a single-chain antibody against EGFRvIII at the COOH terminus of H and containing the marker green fluorescent protein (GFP) gene in position 1.

View Article and Find Full Text PDF

Breast cancer is the most common malignancy and the second leading cause of female cancer mortality in the United States. There is an urgent need for development of novel therapeutic approaches. In this study, we investigated the antitumor potential of a novel viral agent, an attenuated strain of measles virus deriving from the Edmonston vaccine lineage, genetically engineered to produce carcinoembryonic antigen (CEA) against breast cancer.

View Article and Find Full Text PDF

Background: Fusogenic membrane glycoproteins (FMG) such as the gibbon ape leukemia virus envelope (GALV) glycoprotein are potent therapeutic transgenes with potential utility in the gene therapy of gliomas. Transfection of glioma cell lines with FMG expression constructs results in fusion with massive syncytia formation followed by cytotoxic cell death. Nevertheless, ubiquitous expression of the GALV receptor, Pit-1, makes targeting desirable in order to increase the specificity of the observed cytopathic effect.

View Article and Find Full Text PDF

Despite the most aggressive medical and surgical treatments, glioblastoma multiforme remains incurable with a median survival of <1 year. We investigated the antitumor potential of a novel viral agent, an attenuated strain of measles virus (MV), derived from the Edmonston vaccine lineage, genetically engineered to produce carcinoembryonic antigen (CEA). CEA production as the virus replicates can serve as a marker of viral gene expression.

View Article and Find Full Text PDF