Publications by authors named "Cortela G"

Previous works have shown the feasibility of temperature estimation during ultrasonic therapy using pulse-echo diagnostic ultrasound. These methods are based on the measurement of thermally induced changes in backscattered RF echoes due to thermal expansion and changes in ultrasonic velocity. They assume a joint contribution of these two parameters and a linear dependence with temperature.

View Article and Find Full Text PDF

Stability and duration of ultrasonic phantoms are still subjects of research. This work presents a tissue-mimicking material (TMM) to evaluate high-intensity therapeutic ultrasound (HITU) devices, composed of gellan gum (matrix), microparticles (scatterers), and chemicals. The ultrasonic velocity and attenuation coefficient were characterized as a function of temperature (range 20 °C-85 °C).

View Article and Find Full Text PDF

The objective of this work is to propose an effective absorption coefficient (α) as an empirical correction factor in the source term of the bioheat equation. The temperature rise in biological tissue due to ultrasound insonification is produced by energy absorption. Usually, the ultrasonic absorption coefficient (α) is used as a source term in the bioheat equation to quantify the temperature rise, and the effect of scattering is disregarded.

View Article and Find Full Text PDF

This study explores the effect of ultrasound scattering on the temperature increase in phantoms and in samples of ex-vivo biological tissue through the calculation of the thermal dose (TD). Phantoms with different weight percentages of graphite powder (0-1%w/w, different scattering mean free paths, ℓS) and ex-vivo bovine muscle tissue were isonified by therapeutic ultrasound (1 MHz). The TD values were calculated from the first 4 min of experimental temperature curves obtained at several depths and were compared with those acquired from the numerical solution of the bio-heat transfer equation (simulated with 1 MHz and 0.

View Article and Find Full Text PDF

This paper assesses the potential of the average gray-level (AVGL) from ultrasonographic (B-mode) images to estimate temperature changes in time and space in a non-invasive way. Experiments were conducted involving a homogeneous bovine muscle sample, and temperature variations were induced by an automatic temperature regulated water bath, and by therapeutic ultrasound. B-mode images and temperatures were recorded simultaneously.

View Article and Find Full Text PDF

The Schlieren pulsed method uses short-term lighting triggered by an acoustic pulse. This allows for an observation of elastic deformation fields in pulsed regime and for an evaluation of the evolution of the pulse in the interior of homogenous and heterogeneous media. In this paper we apply the Schlieren pulsed method to determine the conditions of the change from simple to multiple scattering.

View Article and Find Full Text PDF