Biochim Biophys Acta Mol Cell Res
January 2025
Kirsten rat sarcoma viral oncogene homolog (KRAS) belongs to the GTPase RAS superfamily, which regulates several cell-signaling pathways involved in the control of important cellular functions, including apoptosis. Oncogenic mutations in KRAS are considered the most common gain-of-function mutations, affecting 30-50 % of colorectal cancer (CRC) patients. While RAS proteins usually play an anti-apoptotic role, little is known about the involvement of KRAS mutations in apoptosis regulation.
View Article and Find Full Text PDFSkin cancer is a high-incidence complex disease, representing a significant challenge to public health, with conventional treatments often having limited efficacy and severe side effects. Nanocarrier-based systems provide a controlled, targeted, and efficacious methodology for the delivery of therapeutic molecules, leading to enhanced therapeutic efficacy, the protection of active molecules from degradation, and reduced adverse effects. These features are even more relevant in dual-loaded nanosystems, with the encapsulated drug molecules leading to synergistic antitumor effects.
View Article and Find Full Text PDFWine is widely consumed throughout the world and represents a significant financial market, but production faces increasing challenges. While consumers progressively value more complex flavor profiles, regional authenticity, and decreased use of additives, winemakers strive for consistency among climate change, characterized by rising environmental temperatures and sun burn events. This often leads to grapes reaching phenolic maturity with higher sugar levels, and increased microbial spoilage risk.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein (aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive. Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others remain to be assessed and their molecular impacts are underexplored.
View Article and Find Full Text PDFN-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB () to investigate the impact of NatB deficiency on apoptosis regulation.
View Article and Find Full Text PDFThe study of cell death mechanisms in fungi, particularly yeasts, has gained substantial interest in recent decades driven by the potential for biotechnological advancements and therapeutic interventions. Examples include the development of robust yeast strains for industrial fermentations and high-value compound production, novel food preservation strategies against spoilage yeasts, and the identification of targets for treating fungal infections in the clinic. In this review, we discuss a wide range of methods to characterize cellular alterations associated with yeast cell death, noting the advantages and limitations.
View Article and Find Full Text PDFColorectal cancer (CRC) is a leading cause of death worldwide. Conventional therapies are available with varying effectiveness. Acetate, a short-chain fatty acid produced by human intestinal bacteria, triggers mitochondria-mediated apoptosis preferentially in CRC but not in normal colonocytes, which has spurred an interest in its use for CRC prevention/therapy.
View Article and Find Full Text PDFBovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities.
View Article and Find Full Text PDFCalcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaMnFeO ( = 0, 0.
View Article and Find Full Text PDFThe milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells.
View Article and Find Full Text PDFAcetic acid and hydrogen peroxide are the most common stimuli to induce apoptosis in yeast. The initial phase of this cell death process is characterized by the maintenance of plasma membrane integrity in cells that had already lost their viability. As loss of plasma membrane integrity is typically assessed by staining with propidium iodide (PI) after exposure of cells to a stimulus and cell viability is determined 48 h after plating, the percentage of cells with compromised plasma membrane integrity and c.
View Article and Find Full Text PDFProteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events.
View Article and Find Full Text PDFLactoferrin (Lf) is a milk-derived protein with well-recognized potential as a therapeutic agent against a wide variety of cancers. This natural protein exhibits health-promoting effects and has several interesting features, including its selectivity towards cancer cells, good tolerability in humans, worldwide availability, and holding a generally recognized as safe (GRAS) status. To prompt the rational clinical application of this promising anticancer compound, previous works aimed to unveil the molecular mechanisms underlying its selective anticancer activity, where plasmalemmal V-ATPase was identified as an Lf target in cancer cells.
View Article and Find Full Text PDFLactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein.
View Article and Find Full Text PDFAcetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry.
View Article and Find Full Text PDFLactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase.
View Article and Find Full Text PDFThe control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes.
View Article and Find Full Text PDFLactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein.
View Article and Find Full Text PDFCisplatin is a widely used antineoplastic agent that has DNA as the main target, though cellular resistance hampers its therapeutic efficacy. An emerging hallmark of cancer cells is their altered metabolism, characterized by increased glycolysis even under aerobic conditions, with increased lactate production (known as the Warburg effect). Although this altered metabolism often results in increased resistance to chemotherapy, it also provides an opportunity for targeted therapeutic intervention.
View Article and Find Full Text PDFThe yeast undergoes a mitochondrial-dependent regulated cell death (RCD) exhibiting typical markers of mammalian apoptosis. We have previously shown that ceramide production contributes to RCD induced by acetic acid and is involved in mitochondrial outer membrane permeabilization and cytochrome release, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p. Recently, we also showed that Sch9p regulates the translocation of Isc1p from the endoplasmic reticulum into mitochondria, perturbing sphingolipid balance and determining cell fate.
View Article and Find Full Text PDFDifferent positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems.
View Article and Find Full Text PDFCisplatin is a highly effective chemotherapeutic drug acting as a DNA-damaging agent that induces apoptosis of rapidly proliferating cells. Unfortunately, cellular resistance still occurs. Mutations in p53 in a large fraction of tumor cells contribute to defects in apoptotic pathways and drug resistance.
View Article and Find Full Text PDFEndoplasmic reticulum-mitochondria contact sites have been a subject of increasing scientific interest since the discovery that these structures are disrupted in several pathologies. Due to the emerging data that correlate endoplasmic reticulum-mitochondria contact sites function with known events of the apoptotic program, we aimed to dissect this interplay using our well-established model of acetic acid-induced apoptosis in Saccharomyces cerevisiae. Until recently, the only known tethering complex between ER and mitochondria in this organism was the ER-mitochondria encounter structure (ERMES).
View Article and Find Full Text PDFA series of optimized protocols to isolate vacuoles from both yeast and plant cells, and to characterize the purified organelles at a functional and structural level, are described. For this purpose, we took advantage of the combined use of cell fractionation techniques with different fluorescence-based approaches namely flow cytometry, fluorescence microscopy and spectrofluorimetry. These protocols altogether constitute valuable tools for the study of vacuole structure and function, as well as for the high-throughput screening of drug libraries to identify new molecules that target the vacuole.
View Article and Find Full Text PDF