Incineration bottom ash fines (≤ 125 μm) are known to contain potentially toxic elements (PTEs) and inorganic salts. The most abundant PTEs in the fines were Zn (0.5%), Cu (0.
View Article and Find Full Text PDFMunicipal solid waste incineration bottom ash fractions ≤4 mm are the most contaminated ones in terms of potentially toxic elements (PTEs). In order to estimate potential environmental impacts, it is important to understand the association of the PTEs with the mineral phases. Large area phase mapping (SEM/EDX) using "PhAse Recognition and Characterization - PARC" software in combination with quantitative X-ray powder diffraction has been used to characterize amorphous and crystalline BA phases for the first time.
View Article and Find Full Text PDFTwo cultural heritage objects studied with scanning electron microscopy-energy dispersive spectroscopy (EDS) are presented in this article: (1) archeological iron present in a soil sample and (2) a chip from a purple-colored area of an undisclosed 17th century painting. Novel PARC software was used to interpret the data in terms of quantitative distribution of mineral and organo-mineral phases as well as their chemical composition. The study serves to demonstrate the power of PARC rather than solving specific archeological issues.
View Article and Find Full Text PDF