Background: The changes in the tumor microenvironment of high-grade serous ovarian carcinomas following neoadjuvant chemotherapy are a complex area of study. Previous research underscores the importance of investigating the immune and collagen components within the tumor microenvironment for prognostic implications.
Methods: In this study, we utilized computational pathology techniques with Hematoxylin and Eosin-stained images to quantitatively characterize the immune and collagen architecture within the tumor microenvironment of patients with high-grade serous ovarian carcinoma.
Objectives: To evaluate the added benefit of integrating features from pre-treatment MRI (radiomics) and digitized post-surgical pathology slides (pathomics) in prostate cancer (PCa) patients for prognosticating outcomes post radical-prostatectomy (RP) including a) rising prostate specific antigen (PSA), and b) extraprostatic-extension (EPE).
Methods: Multi-institutional data (N = 58) of PCa patients who underwent pre-treatment 3-T MRI prior to RP were included in this retrospective study. Radiomic and pathomic features were extracted from PCa regions on MRI and RP specimens delineated by expert clinicians.
Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples.
View Article and Find Full Text PDFBackground: The role of immune cells in collagen degradation within the tumor microenvironment (TME) is unclear. Immune cells, particularly tumor-infiltrating lymphocytes (TILs), are known to alter the extracellular matrix, affecting cancer progression and patient survival. However, the quantitative evaluation of the immune modulatory impact on collagen architecture within the TME remains limited.
View Article and Find Full Text PDFObjective: Oropharyngeal squamous cell carcinoma (OPSCC) recurrence is almost universally fatal. Development of effective therapeutic options requires an improved understanding of recurrent OPSCC biology.
Methods: We analyzed paired primary-recurrent OPSCC from Veterans treated at the Michael E.
Objective: Oropharyngeal squamous cell carcinoma (OPSCC) recurrence is almost universally fatal. Development of effective therapeutic options requires an improved understanding of recurrent OPSCC biology.
Methods: We analyzed paired primary-recurrent OPSCC from Veterans treated at the Michael E.
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results.
View Article and Find Full Text PDFModern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based).
View Article and Find Full Text PDFBreast cancer is one of the most common and deadly cancers worldwide. Approximately, 20% of all breast cancers are characterized as triple negative (TNBC). TNBC typically is associated with a poorer prognosis relative to other breast cancer subtypes.
View Article and Find Full Text PDFObjectives: Matching treatment intensity to tumor biology is critical to precision oncology for head and neck squamous cell carcinoma (HNSCC) patients. We sought to identify biological features of tumor cell multinucleation, previously shown by us to correlate with survival in oropharyngeal (OP) SCC using a machine learning approach.
Materials And Methods: Hematoxylin and eosin images from an institutional OPSCC cohort formed the training set (D).
The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and regulatory cells.
View Article and Find Full Text PDFPrognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN-) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN- IBC.
View Article and Find Full Text PDFObjective: Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmentation in OC-SCC have not been independently tested in a multi-center setting. In this study, we aimed to investigate the effectiveness and applicability of a convolutional neural network (CNN) model to perform epithelial segmentation using digitized H&E-stained diagnostic slides from OC-SCC patients in a multi-center setting.
View Article and Find Full Text PDFDespite known histological, biological, and clinical differences between lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), relatively little is known about the spatial differences in their corresponding immune contextures. Our study of over 1000 LUAD and LUSC tumors revealed that computationally derived patterns of tumor-infiltrating lymphocytes (TILs) on H&E images were different between LUAD (N = 421) and LUSC (N = 438), with TIL density being prognostic of overall survival in LUAD and spatial arrangement being more prognostically relevant in LUSC. In addition, the LUAD-specific TIL signature was associated with OS in an external validation set of 100 NSCLC treated with more than six different neoadjuvant chemotherapy regimens, and predictive of response to therapy in the clinical trial CA209-057 (n = 303).
View Article and Find Full Text PDFBackground: Tumor infiltrating lymphocytes (TILs) reflect adaptive antitumor immune responses in cancer and are generally associated with favorable prognosis. However, the relationships between TILs subsets and their spatial arrangement with clinical benefit from immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) remains less explored.
Methods: We used multiplexed quantitative immunofluorescence panels to determine the association of major TILs subpopulations, CD8 cytotoxic T cells, CD4 helper T cells and CD20 B cells, and T cell exhaustion markers, programmed cell death protein-1 (PD-1),lymphocyte-activation gene 3 (LAG-3) and T cell immunoglobulin mucin-3 (TIM-3) with outcomes in a multi-institutional cohort of baseline tumor samples from 179 patients with NSCLC treated with ICI.
Lung diseases carry a significant burden of morbidity and mortality worldwide. The advent of digital pathology (DP) and an increase in computational power have led to the development of artificial intelligence (AI)-based tools that can assist pathologists and pulmonologists in improving clinical workflow and patient management. While previous works have explored the advances in computational approaches for breast, prostate, and head and neck cancers, there has been a growing interest in applying these technologies to lung diseases as well.
View Article and Find Full Text PDFPurpose: Allogenic hematopoietic stem-cell transplant (HCT) is a curative therapy for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Relapse post-HCT is the most common cause of treatment failure and is associated with a poor prognosis. Pathologist-based visual assessment of aspirate images and the manual myeloblast counting have shown to be predictive of relapse post-HCT.
View Article and Find Full Text PDFOropharyngeal squamous cell carcinoma (OPSCC), largely fueled by the human papillomavirus (HPV), has a complex biological and immunologic phenotype. Although HPV/p16 status can be used to stratify OPSCC patients as a function of survival, it remains unclear what drives an improved treatment response in HPV-associated OPSCC and whether targetable biomarkers exist that can inform a precision oncology approach. We analyzed OPSCC patients treated between 2000 and 2016 and correlated locoregional control (LRC), disease-free survival (DFS) and overall survival (OS) with conventional clinical parameters, risk parameters generated using deep-learning algorithms trained to quantify tumor-infiltrating lymphocytes (TILs) (OP-TIL) and multinucleated tumor cells (MuNI) and targeted transcriptomics.
View Article and Find Full Text PDFBackground: We present a computational approach (ArcTIL) for quantitative characterization of the architecture of tumor-infiltrating lymphocytes (TILs) and their interplay with cancer cells from digitized H&E-stained histology whole slide images and evaluate its prognostic role in three different gynecological cancer (GC) types and across three different treatment types (platinum, radiation and immunotherapy).
Methods: In this retrospective study, we included 926 patients with GC diagnosed with ovarian cancer (OC), cervical cancer, and endometrial cancer with available digitized diagnostic histology slides and survival outcome information. ArcTIL features quantifying architecture and spatial interplay between immune cells and the rest of nucleated cells (mostly comprised cancer cells) were extracted from the cell cluster graphs of nuclei within the tumor epithelial nests, surrounding stroma and invasive tumor front compartments on H&E-stained slides.
Background: Human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has excellent control rates compared to nonvirally associated OPSCC. Multiple trials are actively testing whether de-escalation of treatment intensity for these patients can maintain oncologic equipoise while reducing treatment-related toxicity. We have developed OP-TIL, a biomarker that characterizes the spatial interplay between tumor-infiltrating lymphocytes (TILs) and surrounding cells in histology images.
View Article and Find Full Text PDFWe used computerized image analysis and machine learning approaches to characterize spatial arrangement features of the immune response from digitized autopsied H&E tissue images of the lung in coronavirus disease 2019 (COVID-19) patients. Additionally, we applied our approach to tease out potential morphometric differences from autopsies of patients who succumbed to COVID-19 versus H1N1. H&E lung whole slide images from autopsy specimens of nine COVID-19 and two H1N1 patients were computationally interrogated.
View Article and Find Full Text PDFBACKGROUNDPatients with p16+ oropharyngeal squamous cell carcinoma (OPSCC) are potentially cured with definitive treatment. However, there are currently no reliable biomarkers of treatment failure for p16+ OPSCC. Pathologist-based visual assessment of tumor cell multinucleation (MN) has been shown to be independently prognostic of disease-free survival (DFS) in p16+ OPSCC.
View Article and Find Full Text PDFLocal spatial arrangement of nuclei in histopathology images of different cancer subtypes has been shown to have prognostic value. In order to capture localized nuclear architectural information, local cell cluster graph-based measurements have been proposed. However, conventional ways of cell graph construction only utilize nuclear spatial proximity, and do not differentiate between different cell types while constructing the graph.
View Article and Find Full Text PDFBackground: Use of adjuvant chemotherapy in patients with early-stage lung cancer is controversial because no definite biomarker exists to identify patients who would receive added benefit from it. We aimed to develop and validate a quantitative radiomic risk score (QuRiS) and associated nomogram (QuRNom) for early-stage non-small cell lung cancer (NSCLC) that is prognostic of disease-free survival and predictive of the added benefit of adjuvant chemotherapy following surgery.
Methods: We did a retrospective multicohort study of individuals with early-stage NSCLC (stage I and II) who either received surgery alone or surgery plus adjuvant chemotherapy.