Publications by authors named "Correcher V"

This research aims to study the effects of ultraviolet C (UVC) radiation on low-density polyethylene (LDPE) food packaging. Main objectives include evaluating LDPE degradation and detecting UVC radiation using thermoluminescent dosimeters (TLDs) placed under LDPE samples. Results confirm accurate UVC detection after one hour of exposure, providing a useful tool for optimize food treatment procedures.

View Article and Find Full Text PDF

Underutilized dates are considered as a socioeconomically important fruit for local and global communities, such as Degla-Beida, a common date fruit variety. The aim of this research was to elucidate, for the first time, the efficiency of UV-C light treatment (over different irradiation durations 5, 10, 20, and 40 min) in the enhancement of soluble carbohydrates and phenolic compounds, and to evaluate its effect on the antioxidant capacity. Furthermore, the content of dietary fiber was analyzed: insoluble dietary fiber (11.

View Article and Find Full Text PDF

This paper reports on a comprehensive approach to characterize a set of kidney stones through various analytical techniques including ESEM-EDS, XRD, Raman, and CL spectroscopy, linked to an assessment of the patient's lifestyle and dietary habits. The use of these techniques can provide valuable insights into the underlying causes of stone formation and guide strategies for prevention and treatment. ESEM-EDS and XRD are commonly used techniques for kidney stone characterization due to their complementary nature, enabling the identification of a wide range of renal calculi.

View Article and Find Full Text PDF

This paper reports on the luminescence characterization of TLD-100 (LiF: Ti, Mg), TLD-200 (CaF: Dy), TLD-400 (CaF: Mn) and GR-200 (LiF: Mg, Cu, P) dosimeters exposed to electro beam, beta and ultraviolet C radiation -UVC-. All of them show high sensitivity to radiation regardless of whether it is ionizing or partially ionizing radiation based on their luminescence properties (cathodoluminescence -CL- or thermoluminescence -TL-). CL emission differs significantly among them in shape and intensity due to their chemical compositions.

View Article and Find Full Text PDF

Thermoluminescence (TL) emission of tridymite, a quartz-like mineral, could be used for a variety purposes, including basic research, ceramic technology, traditional/medical industry, and dating. The current study focused on the investigation of the thermal effects on both the luminescence emission and structural properties of natural tridymite. Thermally stimulated luminescence of beta and UVC irradiated samples exhibits complex glow curves indicating simultaneous physical-chemistry processes such as phase transitions, dehydration, dehydroxylation or redox reactions involving intrinsic defects (O vacancies giving rise to F and F-type centers, Schottky and Frenkel defects), extrinsic defects (dopants) and structural defects (stacking fault defects, linear and planar defects or dislocations).

View Article and Find Full Text PDF

This contribution describes a kinetic model attempting to reproduce the response of the thermoluminescent material LiF:Mg,Cu,P when it is irradiated to absorbed dose values in the kGy range. The modelling is based on the hypothesis of a relationship between the irradiation time (i.e.

View Article and Find Full Text PDF

The radiation effect of luminescence emission of Ca-rich oxalate biogenic materials (gallbladder and renal calculi) and a commercial standard sample (CaC O ·H O) is reported. The samples were characterized by environmental scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric and differential thermal analyses, display complex cathodoluminescence (CL) and thermoluminescence (TL) glow emissions. CL spectra (in the UV-infrared range) displayed non-well defined peaks, and exhibited emission at: (i) higher energies (300-490 nm) mainly associated with non-bridging oxygen hole centers, oxygen-deficient centers and peroxy intrinsic defects, regardless of the sample; and (ii) higher, narrow and sharp wavebands, in the red region, probably induced by the presence of traces of Sm ( G → H transition) and/or Tb ( D → F transition) only for mineral-like materials in the human body.

View Article and Find Full Text PDF

This work reports on the cathodoluminescence (CL) and thermoluminescence (TL) properties of gem-quality diaspore samples from Milas/Muğla (Turkey) after 100 h of ultraviolet-C (UVC) exposure. The UVC exposure induces significant changes in the intensity of the CL emission in the range of 400-800 nm that would be mainly associated with photo-oxidation processes of the impurities (Cr, Ti, Fe) that substitute for Al in the diaspore (α-AlOOH) lattice. The UVC effect on the 400 nm-TL behavior of beta irradiated samples in the range of 0.

View Article and Find Full Text PDF

Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties.

View Article and Find Full Text PDF

Boron-rich compounds are of interest in the nuclear industry because they exhibit a high neutron absorption cross section. The manufacture of these materials involves the application of thermal and chemical treatments. This paper focuses on the study of the effect of the heating rate (HR) in two thermal techniques, differential thermal analysis (DTA) and thermoluminescence (TL), performed on natural ulexite from Bigadiç-Balıkesir (Turkey).

View Article and Find Full Text PDF

Mine drainages of La Poderosa (El Campillo, Huelva, Spain), located in the Rio Tinto Basin (Iberian Pyrite Belt) generate carotenoid complexes mixed with copper sulfates presenting good natural models for the production of carotenoids from microorganisms. The environmental conditions of Rio Tinto Basin include important environmental stresses to force the microorganisms to accumulate carotenoids. Here we show as carotenoid compounds in sediments can be analyzed directly in the solid state by Raman and Luminescence spectroscopy techniques to identify solid carotenoid, avoiding dissolution and pre-concentration treatments, since the hydrous copper-salted paragenesis do not mask the Raman emission of carotenoids.

View Article and Find Full Text PDF

This paper reports on both cathodoluminescence (CL) and blue thermoluminescence (TL) emission of well-characterized natural Spanish and Brazilian apatites [Ca5(PO4)3(OH, F, Cl)]. Chemical analyses performed by means of Electron Microprobe Analysis (EMPA) have shown the presence of trace elements that can induce CL bands. In this sense, the apatites shown emission bands peaked at 3.

View Article and Find Full Text PDF

The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG).

View Article and Find Full Text PDF

Lepidolite, K(Li,Al)3(Si,Al)4O10(F,OH)2, and many of the related phyllosilicate mineral of the mica group have been well studied from the chemical and structural point of view; however, to the best of our knowledge, studies on their luminescence properties have been scarcely reported. This work focuses on the thermoluminescence (TL) and cathodoluminescence (CL) response of a natural lepidolite from Portugal previously characterized by means of environmental scanning electron microscope (ESEM) and X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS) techniques. The complexity of the thermoluminescence glow curves of non-irradiated and 1 Gy irradiated samples suggests a structure of a continuous trap distribution involving multiorder kinetics.

View Article and Find Full Text PDF

This paper reports on the Thermoluminescence (TL) and Cathodoluminescence (CL) emission of well-characterized hydrothermal milky quartz specimens from Hakkari in Turkey, labeled THQ, and Madrid in Spain, labeled SHQ, and metamorphic quartz from Madrid, in Spain, labeled SMQ. Both hydrothermal and metamorphic quartz samples display similar UV-IR CL spectra consisting of five groups of components centered at 330 nm and 380 nm linked to [AlO(4)]° centers, 420 nm due to intrinsic defects such as oxygen vacancies, lattice defects, and impurities which modify the crystal structure, 480 nm associated with [AlO(4)]° centers of substitutional Al(3+), and a red broad band related to the hydroxyl defects in the quartz lattice as precursors of non-bridging oxygen hole centers (NBOHC) and substitutional point defects. The Turkish quartz specimen exhibits higher CL intensity in the UV region (up to 330 nm) than the Spanish specimens probably linked to the presence of Ca (0.

View Article and Find Full Text PDF

Arthropod eyes are built of repeating units named ommatidia. Each single ommatidium unit contains a cluster of photoreceptor cells surrounded by support cells and pigment cells. The insect Copium eye ommatidia include additional calcium-phosphate deposits, not described in insects to date, which can be examined today using a combined set of modern microscopy and spectroscopy techniques.

View Article and Find Full Text PDF

The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure.

View Article and Find Full Text PDF

The presence of high level of heavy metals involves a human healthy risk that could induce chronic diseases. This work reports on the metal contamination due to heaps of steel-slag accumulated during more than 40 years in allotments and industrial areas in the southern part of Madrid (Spain). Several slag and soil samples were collected in an area of 10 km(2) and characterized by different conventional (XRD and XRF) and no so common methods (ESEM, thermoluminescence and EDS-WDS).

View Article and Find Full Text PDF

Natural fibrous crystals of bavenite (Ca(4)Be(2)Al(2)Si(9)O(26)(OH)(2)) collected in intra-granitic pegmatite bodies of Bustarviejo (Madrid, Spain) have been examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron microprobe (EMPA) and inductively coupled plasma-mass spectrometry (ICP-MS). The strong luminescence emissions of bavenite using thermoluminescence (TL), cathodoluminescence (CL) and its thermal stability have been recorded, looking for new physical properties and new phosphor or dosimetric uses. The bavenite luminescence takes place in the 5d electron shell that interacts strongly with the crystal field; the spectra bands assignment are Gd(3+) (319nm), Sm(3+) (562 and 594nm), Dy(3+) (572nm) and Tb(3+) (495nm).

View Article and Find Full Text PDF

Cabrera (Madrid) low-Mg calcites exhibit: (i) an unusual twofold elevation in X-ray diffraction pattern intensity; (ii) a 60-fold elevation of luminescence emission, compared to six common natural calcites selected for comparison purposes; (iii) a natural relatively high radiation level of circa 200 nSvh(-1) not detected in 1300 other calcites from the Natural History Museum of Madrid. Calcites were analysed by the X-ray diffraction powder method (XRD), cathodo-luminescence spectroscopy in scanning electron microscopy (CL-SEM), thermoluminescence (TL), differential thermal analysis (DTA), X-ray fluorescence spectrometry (XRF) and particle size distribution (PSD). The Cabrera calcite study shows: (i) helicoidally distributed steps along the (0001) orientation; (ii) protuberance defects onto the (0001) surface, observed by SEM; (iii) XRF chemical contents of 0.

View Article and Find Full Text PDF

Numerical solutions of the differential equations system describing the transitions between energy levels can help in the understanding of the physical mechanisms governing thermoluminescence (TL) emission but they are not suitable for the analysis of complex experimental TL glow curves. On the other hand, simplified descriptions, as mixed or general order kinetics, require many additional assumptions that may limit the validity of the results or are mostly empirical. In this paper, the accuracy of such approximations has been evaluated for different retrapping-recombination ratios and it has been found that differences between the fitted and the simulated parameters arise from the simplification of the models because quasi-equilibrium condition seems to be valid in all the considered cases.

View Article and Find Full Text PDF

This work reports about the thermal stability of the blue thermoluminescence (TL) of a well-characterised natural bentonite from Almeria (Spain). The main interest of this clay, mainly composed of montmorillonite, is because of its application in the field of high-level radioactive waste (HLW) repository in deep-lying rocks. As observed in other aluminosilicates, bentonite exhibits a very complex structure of the emission spectra based on a wide broad maximum peaked at approximately 265 degrees C that can be associated to physico-chemical processes such as dehydroxylation processes, consecutive breaking linking of bonds, formation of hydrolysed ions and redox reactions.

View Article and Find Full Text PDF

The evolution of the thermoluminescence glow curve of a natural Ca-Be rich aluminosilicate after annealing treatments at different temperatures has been studied in order to evaluate the changes in the trapped charge distribution. The glow curve consists of a single broad peak that continuously shifts toward higher temperatures when the sample is preheated up to increasing temperatures, thus indicating the presence of a continuous trap distribution. The glow curve fitting assuming different distribution functions shows how a gaussian distribution becomes a nearly exponential distribution owing to the thermal leakage of charge carriers from trapping centres.

View Article and Find Full Text PDF

The cumulative absorbed dose in fired-clay bricks collected from ten buildings in the populated contaminated settlement (137Cs, 1,470 kBq m(-2)) of Stary Vishkov, located 175 km downwind of the Chernobyl Nuclear Power Plant (NPP) in the Bryansk administrative region of Russia, was determined using luminescence techniques by five laboratories. At each location, the cumulative dose, after subtraction of the natural background dose, was translated to absorbed dose in air using conversion factors derived from Monte Carlo simulations. The simulations employed source distributions inferred from contemporary soil contamination data and also took into account heterogeneity of fallout deposition.

View Article and Find Full Text PDF

The optical emission properties of several minerals components employed in electrode coatings of arc welding have been investigated. The X-ray diffraction analysis shows that the composition of 14 commercial electrode coatings collected from different countries (Spain, France, UK, Poland, Argentina and Germany), consists of quartz, calcite, sodium and potassium rich feldspars, muscovite and rutile. The natural thermal stimulated luminescence (TSL) of these mineral phases, measured in the range of 200-800 nm at different temperatures (from room temperature to 400 degrees C) displays UV-A (wavelengths of 320 nm to 400 nm) and UV-B (from 280 nm to 320 nm) emissions, with the exception of rutile.

View Article and Find Full Text PDF