The DEMO tokamak exhibits extraordinary complexity due to the constraints and requirements pertaining to different fields of physics and engineering. The multidisciplinary nature of the DEMO system makes its design phase extremely challenging since different and often opposite requirements need to be accounted for. Toroidal field (TF) coils generate the toroidal magnetic field required to magnetically confine the plasma particles and support at the same time the poloidal field coils.
View Article and Find Full Text PDFDigital image correlation methods allow the determination of the displacement (and thus the strain) field of a target by picture comparisons, without the application of strain gauges or other invasive devices. Homologous sites are mapped from the undeformed to the deformed configuration, and displacements retrieved at a cloud of points in a scattered fashion. Radial basis functions (RBF) offer a rapid and reliable tool to post-process on-the-fly data from image correlation, in order to compute deformations directly without the need for generating a numerical grid over the measurement points.
View Article and Find Full Text PDFThin plates are very often employed in a context of large displacements and rotations, for example, whenever the extreme flexibility of a body can replace the use of complicated kinematic pairs. This is the case of the flexible Printed Circuit Boards (PCBs) used, for example, within last-generation foldable laptops and consumer electronics products. In these applications, the range of motion is generally known in advance, and a simple strategy of stress assessment leaving out nonlinear numerical calculations appears feasible other than desirable.
View Article and Find Full Text PDFNumerical simulations to evaluate thoracic aortic hemodynamics include a computational fluid dynamic (CFD) approach or fluid-structure interaction (FSI) approach. While CFD neglects the arterial deformation along the cardiac cycle by applying a rigid wall simplification, on the other side the FSI simulation requires a lot of assumptions for the material properties definition and high computational costs. The aim of this study is to investigate the feasibility of a new strategy, based on Radial Basis Functions (RBF) mesh morphing technique and transient simulations, able to introduce the patient-specific changes in aortic geometry during the cardiac cycle.
View Article and Find Full Text PDF