Publications by authors named "Corpet D"

The Covid-19 coronavirus, SARS-CoV-2, is inactivated much faster on paper (3 h) than on plastic (7 d). By classifying materials according to virus stability on their surface, the following list is obtained (from long to short stability): polypropylene (mask), plastic, glass, stainless steel, pig skin, cardboard, banknote, cotton, wood, paper, tissue, copper. These observations and other studies suggest that SARS-CoV-2 may be inactivated by dryness on water absorbent porous materials but sheltered by long-persisting micro-droplets of water on waterproof surfaces.

View Article and Find Full Text PDF

Red meat is probably carcinogenic to humans (WHO/IARC class 2A), in part through heme iron-induced lipoperoxidation. Here, we investigated whether red meat promotes carcinogenesis in rodents and modulates associated biomarkers in volunteers, speculating that an antioxidant marinade could suppress these effects via limitation of the heme induced lipid peroxidation. We gave marinated or non-marinated beef with various degrees of cooking to azoxymethane-initiated rats, mice, and human volunteers (crossover study).

View Article and Find Full Text PDF

Processed meat intake is carcinogenic to humans. We have shown that intake of a workshop-made cured meat with erythorbate promotes colon carcinogenesis in rats. We speculated that polyphenols could inhibit this effect by limitation of endogenous lipid peroxidation and nitrosation.

View Article and Find Full Text PDF

Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat.

View Article and Find Full Text PDF

Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme.

View Article and Find Full Text PDF

This paper is based on a workshop held in Oslo, Norway in November 2013, in which experts discussed how to reach consensus on the healthiness of red and processed meat. Recent nutritional recommendations include reducing intake of red and processed meat to reduce cancer risk, in particular colorectal cancer (CRC). Epidemiological and mechanistic data on associations between red and processed meat intake and CRC are inconsistent and underlying mechanisms are unclear.

View Article and Find Full Text PDF

Cancer progression is associated with epigenetic alterations, such as changes in DNA methylation, histone modifications or variants incorporation. The p400 ATPase, which can incorporate the H2A.Z variant, and the Tip60 histone acetyltransferase are interacting chromatin-modifying proteins crucial for the control of cell proliferation.

View Article and Find Full Text PDF

Background: Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats.

Objectives: We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat-induced preneoplastic lesions in rats and associated biomarkers in rats and humans.

View Article and Find Full Text PDF

Epidemiology suggests that processed meat is associated with colorectal cancer risk, but few experimental studies support this association. We have shown that a model of cured meat made in a pilot workshop promotes preneoplastic lesions, mucin-depleted foci (MDF) in the colon of rats. This study had two aims: to check if real store-bought processed meats also promote MDF, and to test if calcium carbonate, which suppresses heme-induced promotion, can suppress promotion by processed meat.

View Article and Find Full Text PDF

Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis.

View Article and Find Full Text PDF

The effect of meat consumption on cancer risk is a controversial issue. However, recent meta-analyses show that high consumers of cured meats and red meat are at increased risk of colorectal cancer. This increase is significant but modest (20-30%).

View Article and Find Full Text PDF

Red meat and processed meat intake is associated with a risk of colorectal cancer, a major cause of death in affluent countries. Epidemiological and experimental evidence supports the hypothesis that heme iron present in meat promotes colorectal cancer. This meta-analysis of prospective cohort studies of colon cancer reporting heme intake included 566,607 individuals and 4,734 cases of colon cancer.

View Article and Find Full Text PDF

Red meat intake is associated with an increased risk of colorectal cancer. We have previously shown that haemin, Hb and red meat promote carcinogen-induced preneoplastic lesions, aberrant crypt foci (ACF), in the colon of rats. We have also shown that dietary calcium phosphate inhibits haemin-induced promotion and normalises faecal lipoperoxides and cytotoxicity.

View Article and Find Full Text PDF

Processed and red meat consumption is associated with the risk of colorectal cancer. Meta-analyses have suggested that the risk associated with processed meat is higher. Most processed meats are cured and cooked, which leads to formation of free nitrosyl heme.

View Article and Find Full Text PDF

Processed meat intake is associated with colorectal cancer risk, but no experimental study supports the epidemiologic evidence. To study the effect of meat processing on carcinogenesis promotion, we first did a 14-day study with 16 models of cured meat. Studied factors, in a 2 x 2 x 2 x 2 design, were muscle color (a proxy for heme level), processing temperature, added nitrite, and packaging.

View Article and Find Full Text PDF

Thermolysis of proteins produces xenobiotic amino-acids such as the potentially toxic lysinoalanine, and the alkylating agent, dehydroalanine, which have been considered possible health hazards. We observed that thermolyzed casein promoted aberrant crypt foci (ACF) and colon cancer growth in rats initiated with azoxymethane and speculated that promotion might be due to the formation of these compounds. To test this notion we first measured the concentration of the modified amino acids as a function of thermolysis time.

View Article and Find Full Text PDF

Processed meat intake may be involved in the etiology of colorectal cancer, a major cause of death in affluent countries. The epidemiologic studies published to date conclude that the excess risk in the highest category of processed meat-eaters is comprised between 20% and 50% compared with non-eaters. In addition, the excess risk per gram of intake is clearly higher than that of fresh red meat.

View Article and Find Full Text PDF

Red meat consumption is associated with increased risk of colorectal cancer. We have previously shown that haemin, Hb and red meat promote carcinogen-induced preneoplastic lesions: aberrant crypt foci (ACF) and mucin-depleted foci (MDF) in rats. We have also shown that dietary Ca, antioxidant mix and olive oil inhibit haemin-induced ACF promotion, and normalize faecal lipoperoxides and cytotoxicity.

View Article and Find Full Text PDF

Onion intake might reduce the risk of colorectal cancer, according to epidemiology. However, Femia showed in 2003 that diets with a 20% onion intake increase carcinogenesis in rats. We speculated this dose was too high.

View Article and Find Full Text PDF

Background: Red meat consumption is associated with an increased risk of colon cancer. Animal studies show that heme, found in red meat, promotes preneoplastic lesions in the colon, probably due to the oxidative properties of this compound. End products of lipid peroxidation, such as 4-hydroxynonenal metabolites or 8-iso-prostaglandin-F(2)alpha (8-iso-PGF(2)alpha), could reflect this oxidative process and could be used as biomarkers of colon cancer risk associated with heme intake.

View Article and Find Full Text PDF

Background And Aim: Dietary polyethylene glycol (PEG) is extraordinarily potent in the chemoprevention of experimental colon carcinogenesis. PEG is used to treat constipation in France and in the USA. French laxatives include Forlax (PEG4000), Movicol and Transipeg (PEG3350), and Idrocol (pluronic F68).

View Article and Find Full Text PDF