Publications by authors named "Cornelius Barry"

Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids.

View Article and Find Full Text PDF

Correction for 'Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae' by Paul D. Fiesel , , 2022, , 1438-1464, https://doi.org/10.

View Article and Find Full Text PDF

Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging.

View Article and Find Full Text PDF

Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids.

View Article and Find Full Text PDF

Plant metabolites from diverse pathways are important for plant survival, human nutrition and medicine. The pathway memberships of most plant enzyme genes are unknown. While co-expression is useful for assigning genes to pathways, expression correlation may exist only under specific spatiotemporal and conditional contexts.

View Article and Find Full Text PDF

Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like have extensive, experimentally derived annotations, whereas many non-model species do not.

View Article and Find Full Text PDF

The fruit surface is a unique tissue with multiple roles influencing fruit development, post-harvest storage and quality, and consumer acceptability. Serving as the first line of protection against herbivores, pathogens, and abiotic stress, the surface can vary markedly among species, cultivars within species, and developmental stage. In this study we explore developmental changes and natural variation of cucumber ( L.

View Article and Find Full Text PDF

Enzymes are the ultimate entities responsible for chemical transformations in natural and engineered biosynthetic pathways. However, many natural enzymes suffer from suboptimal functional expression due to poor intrinsic protein stability. Further, stability enhancing mutations often come at the cost of impaired function.

View Article and Find Full Text PDF

Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class.

View Article and Find Full Text PDF

Flowers of produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated.

View Article and Find Full Text PDF

Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily.

View Article and Find Full Text PDF

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P.

View Article and Find Full Text PDF

Background: Petunia (Petunia × hybrida), derived from a hybrid between P. axillaris and P. integrifolia, is one of the most economically important bedding plant crops and Petunia spp.

View Article and Find Full Text PDF

The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna).

View Article and Find Full Text PDF

The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown.

View Article and Find Full Text PDF

Isoprenoids are diverse compounds that have their biosynthetic origin in the initial condensation of isopentenyl diphosphate and dimethylallyl diphosphate to form C10 prenyl diphosphates that can be elongated by the addition of subsequent isopentenyl diphosphate units. These reactions are catalyzed by either cis-prenyltransferases (CPTs) or trans-prenyltransferases. The synthesis of volatile terpenes in plants typically proceeds through either geranyl diphosphate (C10) or trans-farnesyl diphosphate (C15), to yield monoterpenes and sesquiterpenes, respectively.

View Article and Find Full Text PDF

Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence.

View Article and Find Full Text PDF

Acylsugars are polyesters of short- to medium-length acyl chains on sucrose or glucose backbones that are produced in secretory glandular trichomes of many solanaceous plants, including cultivated tomato (Solanum lycopersicum). Despite their roles in biotic stress adaptation and their wide taxonomic distribution, there is relatively little information about the diversity of these compounds and the genes responsible for their biosynthesis. In this study, acylsugar diversity was assessed for 80 accessions of the wild tomato species Solanum habrochaites from throughout the Andes Mountains.

View Article and Find Full Text PDF

The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), respectively.

View Article and Find Full Text PDF

Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs--SlGLK1 and SlGLK2--are expressed in leaves, but only SlGLK2 is expressed in fruit.

View Article and Find Full Text PDF

Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes.

View Article and Find Full Text PDF

The chloroplast is the site of photosynthesis in higher plants but also functions as the center of synthesis for primary and specialized metabolites including amino acids, fatty acids, starch, and diverse isoprenoids. Mutants that disrupt aspects of chloroplast function represent valuable tools for defining structural and biochemical regulation of the chloroplast and its interplay with whole-plant structure and function. The lutescent1 (l1) and l2 mutants of tomato (Solanum lycopersicum) possess a range of chlorophyll-deficient phenotypes including reduced rates of chlorophyll synthesis during deetiolation and enhanced rates of chlorophyll loss in leaves and fruits as they age, particularly in response to high-light stress and darkness.

View Article and Find Full Text PDF

A systematic screen of volatile terpene production in the glandular trichomes of 79 accessions of Solanum habrochaites was conducted and revealed the presence of 21 mono- and sesquiterpenes that exhibit a range of qualitative and quantitative variation. Hierarchical clustering identified distinct terpene phenotypic modules with shared patterns of terpene accumulation across accessions. Several terpene modules could be assigned to previously identified terpene synthase (TPS) activities that included members of the TPS-e/f subfamily that utilize the unusual cis-prenyl diphosphate substrates neryl diphosphate and 2z,6z-farnesyl diphosphate.

View Article and Find Full Text PDF

Color changes often accompany the onset of ripening, leading to brightly colored fruits that serve as attractants to seed-dispersing organisms. In many fruits, including tomato (Solanum lycopersicum) and pepper (Capsicum annuum), there is a sharp decrease in chlorophyll content and a concomitant increase in the synthesis of carotenoids as a result of the conversion of chloroplasts into chromoplasts. The green-flesh (gf) and chlorophyll retainer (cl) mutations of tomato and pepper, respectively, are inhibited in their ability to degrade chlorophyll during ripening, leading to the production of ripe fruits characterized by both chlorophyll and carotenoid accumulation and are thus brown in color.

View Article and Find Full Text PDF

To achieve full ripening, climacteric fruits, such as tomato require synthesis, perception and signal transduction of the plant hormone ethylene. The nonripening phenotype of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato is the result of reduced ethylene responsiveness in fruit tissues. In addition, a subset of ethylene responses associated with floral senescence, abscission, and root elongation are also impacted in mutant plants, but to a lesser extent.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontbn5ra5d1mqqpinmu45m8uu65p91vtks): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once