A series of homo- and heterodimeric compounds encompassing the follicle-stimulating hormone receptor (FSHR) antagonist (R)-1 and its inactive conformer (S)-1 connected through ethylene glycol spacers of various lengths is described. Evaluation of these compounds reveals that dimeric compounds, with a spacer of sufficient length, bearing two active copies of the antagonist are more potent relative to dimeric compounds in which one of the active pharmacophores is replaced by an inactive conformer. Interestingly, the opposite trend is observed if a short spacer is used, indicating that these compounds may be valuable tools to study FSHR dimerization in greater detail.
View Article and Find Full Text PDFTwo series of dimeric ligands for a G-protein-coupled receptor were prepared that differ by the interconnecting spacer system. Biological evaluation revealed that both dimeric series exhibit unique biological properties relative to their monomeric counterparts.The luteinizing hormone receptor (LHR), the follicle-stimulating hormone receptor (FSHR), and the thyroid-stimulating hormone receptor (TSHR) belong to the glycoprotein hormone receptor (GpHR) family.
View Article and Find Full Text PDFThe fact that GPCRs might function in a dimeric fashion is currently well accepted. For GnRHR, a GPCR that regulates gonadotropin release, there is evidence that the receptor also functions as a dimer. We here describe the design and synthesis of a set of dimeric GnRHR antagonists in order to understand the interaction of dimeric ligands to the receptor and to address the question whether GnRHR dimerization is a prerequisite for signalling.
View Article and Find Full Text PDFThe luteinizing hormone (LH) receptor plays a pivotal role in reproduction. The high-molecular-weight (HMW) human chorionic gonadotropin (hCG) and LH are the endogenous ligands of this receptor and bind to its large N terminus. The present study characterizes the binding of a new low-molecular-weight (LMW) radioligand, [(3)H]5-amino-2-methylsulfanyl-4-[3-(2-morpholin-4-yl-acetylamino)-phenyl]-thieno[2,3-d]pyrimidine-6-carboxylic acid tert-butylamide (Org 43553), at the LH receptor.
View Article and Find Full Text PDFArthritis Res Ther
April 2008
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263-275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities.
View Article and Find Full Text PDFG protein coupled receptors (GPCRs) are important drug targets in pharmaceutical research. Traditionally, most research efforts have been devoted towards the design of small molecule agonists and antagonists. An interesting, yet poorly investigated class of GPCR modulators comprise the bivalent ligands, in which two receptor pharmacophores are incorporated.
View Article and Find Full Text PDFSubstituted 6-amino-4-phenyl-tetrahydroquinoline derivatives are described that are antagonists for the G(s)-protein-coupled human follicle-stimulating hormone (FSH) receptor. These compounds show high antagonistic efficacy in vitro using a CHO cell line expressing the human FSH receptor. Antagonist 10 also showed a submicromolar IC(50) in a more physiologically relevant rat granulosa cell assay and was found to significantly inhibit follicle growth and ovulation in an ex vivo mouse model.
View Article and Find Full Text PDF