Am J Physiol Cell Physiol
November 2022
Adenosine deaminases acting on RNAs convert adenosines (A) to inosines (I) in structured or double-stranded RNAs. In mammals, this process is widespread. In the human transcriptome, more than a million different sites have been identified that undergo an ADAR-mediated A-to-I exchange Inosines have an altered base pairing potential due to the missing amino group when compared to the original adenosine.
View Article and Find Full Text PDFRNA-editing by adenosine deaminases acting on RNA (ADARs) converts adenosines to inosines in structured RNAs. Inosines are read as guanosines by most cellular machineries. A to I editing has two major functions: first, marking endogenous RNAs as "self", therefore helping the innate immune system to distinguish repeat- and endogenous retrovirus-derived RNAs from invading pathogenic RNAs; and second, recoding the information of the coding RNAs, leading to the translation of proteins that differ from their genomically encoded versions.
View Article and Find Full Text PDFMany intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization.
View Article and Find Full Text PDFAdenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease.
View Article and Find Full Text PDFSUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery.
View Article and Find Full Text PDFThe ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.
View Article and Find Full Text PDFAdenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are ∼21-nucleotide-long, single-stranded noncoding RNAs that regulate gene expression. Biogenesis of miRNAs is mediated by the two RNase III-like enzymes, Drosha and Dicer. Here we study miRNA biogenesis during maturation of Xenopus oocytes to eggs using microinjection of pri-miRNAs.
View Article and Find Full Text PDFAdenosine deaminases that act on RNA bind double-stranded and structured RNAs and convert adenosines to inosines by hydrolytic deamination. Inosines are recognized as guanosines, and, hence, RNA editing alters the sequence information but also structure of RNAs. Editing by ADARs is widespread and essential for normal life and development.
View Article and Find Full Text PDF