Due to their outstanding properties, quantum dots (QDs) received a growing interest in the biomedical field, but it is of major importance to investigate and to understand their interaction with the biomolecules. We examined the stability of silicon QDs and the time evolution of QDs - protein corona formation in various biological media (bovine serum albumin, cell culture medium without or supplemented with 10% fetal bovine serum-FBS). Changes in the secondary structure of BSA were also investigated over time.
View Article and Find Full Text PDFThis study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles' morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction.
View Article and Find Full Text PDFThe use of quantum dots (QDs) in biomedical applications is limited due to their inherent toxicity caused by the heavy metal core of the particles. Consequently, silicon-based QDs are expected to display diminished toxicity. We investigated the in vivo effects induced by Si/SiO2 QDs intraperitoneally injected in crucian carp liver.
View Article and Find Full Text PDFMagnetite nanoparticles (MNP) have attracted great interest for biomedical applications due to their unique chemical and physical properties, but the MNP impact on human health is not fully known. Consequently, our study proposes to highlight the biochemical mechanisms that underline the toxic effects of MNP on a human lung fibroblast cell line (MRC-5). The cytotoxicity generated by MNP in MRC-5 cells was dose and time-dependent.
View Article and Find Full Text PDFQuantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h.
View Article and Find Full Text PDFSi/SiO2 quantum dots (QDs) are novel particles with unique physicochemical properties that promote them as potential candidates for biomedical applications. Although their interaction with human cells has been poorly investigated, oxidative stress appears to be the main factor involved in the cytotoxicity of these nanoparticles. In this study, we show for the first time the influence of Si/SiO2 QDs on cellular redox homeostasis and glutathione distribution in human lung fibroblasts.
View Article and Find Full Text PDFQuantum dots (QDs) interaction with living organisms is of central interest due to their various biological and medical applications. One of the most important mechanisms proposed for various silicon nanoparticle-mediated toxicity is oxidative stress. We investigated the basic processes of cellular damage by oxidative stress and tissue injury following QD accumulation in the gibel carp liver after intraperitoneal injection of a single dose of 2 mg/kg body weight Si/SiO2 QDs after 1, 3, and 7 days from their administration.
View Article and Find Full Text PDFHere we report the preparation of high performance Quantum Dot Sensitized Solar Cells (QDSCs) based on PbS-CdS co-sensitized nanoporous TiO2 electrodes. QDs were directly grown on the TiO2 mesostructure by the Successive Ionic Layer Absorption and Reaction (SILAR) technique. This method is characterized by a fast deposition rate which involves random crystal growth and poor control of the defect states and lattice mismatch in the QDs limiting the quality of the electrodes for photovoltaic applications.
View Article and Find Full Text PDFHydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA·cm(-2), leading to 60 mL·cm(-2)·day(-1) hydrogen generation.
View Article and Find Full Text PDFSilicon-based quantum dots were intraperitoneally injected in Carassius auratus gibelio specimens and, over one week, the effects on renal tissue were investigated by following their distribution and histological effects, as well as antioxidative system modifications. After three and seven days, detached epithelial cells from the basal lamina, dilated tubules and debris in the lumen of tubules were observed. At day 7, nephrogenesis was noticed.
View Article and Find Full Text PDFSilicon-based quantum dots were intraperitoneally injected in individuals of Carassius auratus gibelio. Their effects on white muscle were investigated by following their distribution and impact on the antioxidative system. The GSH level significantly increased after 1 and 3 days of exposure by, respectively, 85.
View Article and Find Full Text PDFParticles generated from numerous anthropogenic and/or natural sources, such as crystalline α-Fe₂O₃ nanoparticles, have the potential to damage lung cells. In our study we investigated the effects of these nanoparticles (12.5 µg/ml) on lipid peroxidation and the antioxidative system in MRC-5 lung fibroblast cells following exposure for 24, 48 or 72h.
View Article and Find Full Text PDF