Publications by authors named "Cornelia Klak"

The family Aizoaceae includes ~1880 species and is one of the more diverse groups within Caryophyllales, particularly in arid areas in the western part of southern Africa. Most species are dwarf succulent-leaf shrubs. In response to the harsh climatic conditions prevalent where they occur, many representatives have evolved special reproductive adaptations.

View Article and Find Full Text PDF

Resurrecting extinct species is a fascinating and challenging idea for scientists and the general public. Whereas some theoretical progress has been made for animals, the resurrection of extinct plants (de-extinction sensu lato) is a relatively recently discussed topic. In this context, the term 'de-extinction' is used sensu lato to refer to the resurrection of 'extinct in the wild' species from seeds or tissues preserved in herbaria, as we acknowledge the current impossibility of knowing a priori whether a herbarium seed is alive and can germinate.

View Article and Find Full Text PDF

Aizoaceae (Caryophyllales) constitute one of the major floral components of the unique Greater Cape Floristic Region (GCFR), with more than 1700 species and 70% endemism. Within succulent Aizoaceae, the subfamily Ruschioideae is the most speciose and rapidly diversifying clade, offering potential niches for the diversification of specialized herbivorous insects. Nevertheless, insect diversity on these plants has not been studied to date, and knowledge of gall-inducing insects in the Afrotropics is generally scarce.

View Article and Find Full Text PDF

The taxonomy of perennial species in Africa has been poorly investigated until now. Previously five perennial species of were recognised in Africa (, , , and ). Based on the differing number of stamens, is accepted here as being distinct from .

View Article and Find Full Text PDF

The Aizooideae is an early-diverging lineage within the Aizoaceae. It is most diverse in southern Africa, but also has endemic species in Australasia, Eurasia and South America. We derived a phylogenetic hypothesis from Bayesian and Maximum Likelihood analyses of plastid DNA-sequences.

View Article and Find Full Text PDF

In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments.

View Article and Find Full Text PDF

The Ruschieae is a large tribe of about 1600 species of succulent perennials. They form a major component of the arid parts of the Greater Cape Floristic Region, both in numbers of species and in their density of coverage. So far phylogenetic relationships within the tribe have been unresolved, largely through the paucity of variable molecular characters and this is ascribed to the tribe's recent and rapid radiation.

View Article and Find Full Text PDF

The Mesembryanthemoideae and Ruschioideae subfamilies are a major component of the Greater Cape Floristic Region in southern Africa. The Ruschioideae show an astonishing diversity of leaf shape and growth forms. Although 1,585 species are recognised within the morphologically diverse Ruschioideae, these species show minimal variation in plastid DNA sequence.

View Article and Find Full Text PDF

The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers.

View Article and Find Full Text PDF