The process of islet amyloid polypeptide (IAPP) formation and the prefibrillar oligomers are supposed to be one of the pathogenic agents causing pancreatic β-cell dysfunction. The human IAPP (hIAPP) aggregates easily and therefore, it is difficult to characterize its structural features by standard biophysical tools. The rat version of IAPP (rIAPP) that differs by six amino acids when compared with hIAPP, is not prone to aggregation and does not form amyloid fibrils.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2013
The subunit ε of bacterial F(1)F(O) ATP synthases plays an important regulatory role in coupling and catalysis via conformational transitions of its C-terminal domain. Here we present the first low-resolution solution structure of ε of Mycobacterium tuberculosis (Mtε) F(1)F(O) ATP synthase and the nuclear magnetic resonance (NMR) structure of its C-terminal segment (Mtε(103-120)). Mtε is significantly shorter (61.
View Article and Find Full Text PDFThe nucleotide binding sites in A-ATP synthases are located at the interfaces of subunit A and B, which is proposed to play a regulatory role. Differential binding of MgATP and -ADP to subunit B has been described, which does not exist in the related α and B subunits of F-ATP synthases and V-ATPases, respectively. The conserved phosphate loop residues, histidine and asparagine, of the A-ATP synthase subunit B have been proposed to be essential for γ-phosphate interaction.
View Article and Find Full Text PDFBackground: Dengue virus surface proteins, envelope (E) and pre-membrane (prM), undergo rearrangement during the maturation process at acidic condition.
Results: prM-stem region binds tighter to both E protein and lipid membrane when environment becomes acidic.
Conclusion: At acidic condition, E proteins are attracted to the membrane-associated prM-stem.
A(1)A(O) ATP synthases are the major energy converters of archaea. They are composed of an A(1) region that synthesizes ATP and an integral part A(O) that conducts ions. Subunit E is a component of the peripheral stalk that links the A(1) with the A(O) part of the A-ATP synthase.
View Article and Find Full Text PDFThe interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A(1)A(O) ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A(1)A(O) ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2011
Two of the distinct diversities of the engines A(1)A(O) ATP synthase and F(1)F(O) ATP synthase are the existence of two peripheral stalks and the 24kDa stalk subunit E inside the A(1)A(O) ATP synthase. Crystallographic structures of subunit E have been determined recently, but the epitope(s) and the strength to which this subunit does bind in the enzyme complex are still a puzzle. Using the recombinant A(3)B(3)D complex and the major subunits A and B of the methanogenic A(1)A(O) ATP synthase in combination with fluorescence correlation spectroscopy (FCS) we demonstrate, that the stalk subunit E does bind to the catalytic headpiece formed by the A(3)B(3) hexamer with an affinity (K(d)) of 6.
View Article and Find Full Text PDFVacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS).
View Article and Find Full Text PDFJ Bioenerg Biomembr
August 2010
The structure of the C-terminus of subunit E (E(101-206)) of Methanocaldococcus jannaschii A-ATP synthase was determined at 4.1 A. E(101-206) consist of a N-terminal globular domain with three alpha-helices and four antiparallel beta-strands and an alpha-helix at the very C-terminus.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2010
A(1)A(o) ATP synthases are the major energy producers in archaea. Subunit E of the stator domain of the ATP synthase from Pyrococcus horikoshii OT3 was cloned, expressed and purified to homogeneity. The monodispersed protein was crystallized by vapour diffusion.
View Article and Find Full Text PDFBackground: Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor.
View Article and Find Full Text PDFSubunit alpha of the Escherichia coli F(1)F(O) ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of alpha allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K ( d )) of 1.
View Article and Find Full Text PDFOwing to the complex nature of V(1)V(O) ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V(1) headpiece and the V(O)-domain of the yeast V(1)V(O) ATPase via subunit A and d as well as the V(O) subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively.
View Article and Find Full Text PDFEna/VASP homology 1 (EVH1) domains are polyproline binding domains that are present in a wide range of adaptor proteins, among them Ena/VASP proteins involved in actin remodeling and axonal guidance. The interaction of ActA, a transmembrane protein from the food-borne pathogen Listeria monocytogenes, with EVH1 domains has been shown to be crucial for recruitment of the host's actin skeleton and, as a consequence, for the infectivity of this bacterium. We present the structure of a synthetic high-affinity Mena EVH1 ligand, pGolemi, capable of paralog-specific binding, solved by NMR spectroscopy.
View Article and Find Full Text PDFA strategically placed tryptophan in position of Arg416 was used as an optical probe to monitor adenosine triphosphate and adenosine-diphosphate binding to subunit B of the A(1)A(O) adenosine triphosphate (ATP) synthase from Methanosarcina mazei Gö1. Tryptophan fluorescence and fluorescence correlation spectroscopy gave binding constants indicating a preferred binding of ATP over ADP to the protein. The X-ray crystal structure of the R416W mutant protein in the presence of ATP was solved to 2.
View Article and Find Full Text PDFThe mechanism by which a malaria merozoite recognizes a suitable host cell is mediated by a cascade of receptor-ligand interactions. In addition to the availability of the appropriate receptors, intracellular ATP plays an important role in determining whether erythrocytes are suitable for merozoite invasion. Recent work has shown that ATP secreted from erythrocytes signals a number of cellular processes.
View Article and Find Full Text PDFThe first low resolution solution structure of the soluble domain of subunit b (b (22-156)) of the Escherichia coli F(1)F(O) ATPsynthase was determined from small-angle X-ray scattering data. The dimeric protein has a boomerang-like shape with a total length of 16.2 +/- 0.
View Article and Find Full Text PDFA critical point in the V(1) sector and entire V(1)V(O) complex is the interaction of stalk subunits G (Vma10p) and E (Vma4p). Previous work, using precipitation assays, has shown that both subunits form a complex. In this work, we have analysed the N-terminal segment of subunit G (G(1-59)) of the V(1)V(O) ATPase from Saccharomyces cerevisiae by using nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFThe boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure.
View Article and Find Full Text PDFSeveral flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor.
View Article and Find Full Text PDFThe Asian tiger mosquito, Aedes albopictus, is commonly infected by the gregarine parasite Ascogregarina taiwanensis, which develops extracellularly in the midgut of infected larvae. The intracellular trophozoites are usually confined within a parasitophorous vacuole, whose acidification is generated and controlled by the V(1)V(O) ATPase. This proton pump is driven by ATP hydrolysis, catalyzed inside the major subunit A.
View Article and Find Full Text PDFThe Mena EVH1 domain, a protein-interaction module involved in actin-based cell motility, recognizes proline-rich ligand motifs, which are also present in the sequence of the surface protein ActA of Listeria monocytogenes. The interaction of ActA with host Mena EVH1 enables the bacterium to actively recruit host actin in order to spread into neighboring cells. Based on the crystal structure of Mena EVH1 in complex with a polyproline peptide ligand, we have generated a range of assembled peptides presenting the Mena EVH1 fragments that make up its discontinuous binding site for proline-rich ligands.
View Article and Find Full Text PDF