In vitro culturing of mammalian cells provides an elegant platform to study cell signaling, interactions, and metabolism as well as proliferation and differentiation processes. Often, these cells are cultured and maintained in sera obtained from animals such as horses, cows, and rabbits. The sera used for this purpose fluctuates in composition from individual animals and, hence, influences the cellular growth and differentiation at different magnitudes.
View Article and Find Full Text PDFIn vitro differentiation of embryonic stem (ES) cells results in generation of tissue-specific somatic cells and may represent a powerful tool for general understanding of cellular differentiation and development in vivo. Culturing of most ES cell lines requires murine embryonic fibroblasts (MEF), which may influence adventitiously the genetic differentiation program of ES cells. We compared the expression profile of key developmental genes in the MEF-independent CGR8 ES cell line and in the MEF-dependent D3 ES cell line.
View Article and Find Full Text PDFCatechins have been reported to possess anti-cancer activity in vitro and in vivo. To identify target genes that may be involved in the anti-tumorigenic effect of catechins, gene expression profiles in adherent human HT 29 colon carcinoma cells, in HT 29 spheroids and in epigallocatechin-3 gallate (EGCG)-treated HT 29 cells have been analysed by high-density oligonucleotide microarrays. Treatment of HT 29 cells with EGCG (2.
View Article and Find Full Text PDFBackground/aims: Embryonic stem (ES) cells may represent an alternative source of functionally mature cardiomyocytes for the treatment of heart diseases. ES cells spontaneously differentiate into spheroidal aggregates, also referred to as embryoid bodies (EBs). The identification of growth factors playing a decisive role in cardiogenesis is a crucial issue for the generation of mature cardiomyocytes.
View Article and Find Full Text PDFFunction and regulation of the intrinsic prion protein (PrPc) are largely unknown. In the present study the regulation of PrPc expression by growth factors and cytokines that increase intracellular reactive oxygen species (ROS) levels was studied in glioma and neuroblastoma cells grown as multicellular tumor spheroids. PrPc protein was significantly increased when glioma spheroids were treated with either ATP, nerve growth factor (NGF), epidermal growth factor (EGF), or tumor necrosis factor alpha (TNF-alpha), whereas mRNA levels as evaluated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) remained unchanged.
View Article and Find Full Text PDFDifferent subtypes of voltage-dependent Ca(2+) currents in native neurones are essential in coupling action potential firing to Ca(2+) influx. For most of these currents, the underlying Ca(2+) channel subunits have been identified on the basis of pharmacological and biophysical similarities. In contrast, the molecular basis of R-type Ca(2+) currents remains controversial.
View Article and Find Full Text PDFMultiple types of voltage-activated Ca(2+) channels (T, L, N, P, Q, R type) coordinate Ca(2+)-dependent processes in neurons and neuroendocrine cells. Expressional and functional data have suggested a role for Ca(v)2.3 Ca(2+) channels in endocrine processes.
View Article and Find Full Text PDF