In actively dividing eukaryotic cells, chromosome ends (telomeres) are subject to progressive shortening, unless they are maintained by the action of telomerase, a dedicated enzyme that adds DNA sequence repeats to chromosomal 3'end. For its enzymatic function on telomeres, telomerase requires nuclear import of its protein component (hTERT in human cells) and assembly with the RNA component, TERC. We now confirm a major nuclear localization signal (NLS) in the N-terminal region of hTERT and describe a novel one in the C-terminal part.
View Article and Find Full Text PDFSUN domain proteins are integral proteins of the inner nuclear membrane and functions in linkage of the nuclear lamina to the cytoskeleton. Moreover, SUN domain proteins seem to mediate the tethering of the centrosome to the nuclear membrane, and they are involved in telomere attachment to the nuclear envelope in meiotic cells, and in germ cell development in invertebrates. In contrast to the widely expressed SUN domain proteins in mammals, SUN1 and SUN2, which have been analysed in great detail, there is virtually nothing known about testicular SUN domain proteins.
View Article and Find Full Text PDFThe signaling molecule 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) has been described as the "anti-inflammatory prostaglandin." Here we show that substrates of the nuclear export receptor CRM1 accumulate in the nucleus in the presence of 15d-PGJ(2), identifying this prostaglandin as a regulator of CRM1-dependent nuclear protein export that can be produced endogenously. Like leptomycin B (LMB), an established fungal CRM1-inhibitor, 15d-PGJ(2) reacts with a conserved cysteine residue in the CRM1 sequence.
View Article and Find Full Text PDF