Publications by authors named "Cornelia Dorner-Ciossek"

N-methyl-D-aspartate-receptor (NMDAR) hypofunction contributes to cognitive impairments in neuropsychiatric disorders such as schizophrenia. Reduced NMDAR signalling can be enhanced by increasing extracellular levels of the NMDAR co-agonist glycine through inhibition of its transporter (GlyT1). This may be one option to improve cognitive deficits or negative symptoms of schizophrenia.

View Article and Find Full Text PDF

-methyl-D-aspartate (NMDA) receptor hypofunction leading to neural network dysfunction is thought to play an important role in the pathophysiology of cognitive impairment associated with schizophrenia (CIAS). Increasing extracellular concentrations of the NMDA receptor co-agonist glycine through inhibition of glycine transporter-1 (GlyT1) has the potential to treat CIAS by improving cortical network function through enhanced glutamatergic signaling. Indeed, the novel GlyT1 inhibitor iclepertin (BI 425809) improved cognition in a recent clinical study in patients with schizophrenia.

View Article and Find Full Text PDF

BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.

View Article and Find Full Text PDF

Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids.

View Article and Find Full Text PDF

Both rare, high risk, loss-of-function mutations and common, low risk, genetic variants in the CUL3 gene are strongly associated with neuropsychiatric disorders. Network analyses of neuropsychiatric risk genes have shown high CUL3 expression in the prenatal human brain and an enrichment in neural precursor cells (NPCs) and cortical neurons. The role of CUL3 in human neurodevelopment however, is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed cerebrospinal fluid (CSF) from MDD patients compared to controls and patients with other psychiatric disorders, revealing significant changes in protein levels during depressive episodes.
  • * Key proteins involved in synaptic transmission were found to be significantly lower in MDD patients, suggesting a potential biosignature for the disorder and providing insights into its underlying mechanisms.
View Article and Find Full Text PDF

Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure.

View Article and Find Full Text PDF

Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats.

View Article and Find Full Text PDF

Current understanding of the molecular mechanisms underlying ketamine's antidepressant effect remains largely incomplete. Recent imaging studies provide evidence for ketamine effects on amygdalo-hippocampal. This study in mice aimed to investigate acute proteomic changes after ketamine administration in various brain regions including amygdala and hippocampus.

View Article and Find Full Text PDF

-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) is an established cellular model underlying learning and memory, and involves intracellular signaling mediated by the second messenger cyclic guanosine monophosphate (cGMP). As phosphodiesterase (PDE)9A selectively hydrolyses cGMP in areas of the brain related to cognition, PDE9A inhibitors may improve cognitive function by enhancing NMDA receptor-dependent LTP. This study aimed to pharmacologically characterize BI 409306, a novel PDE9A inhibitor, using in vitro assays and in vivo determination of cGMP levels in the brain.

View Article and Find Full Text PDF

The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.

View Article and Find Full Text PDF

Rationale: The N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is known to have not only a rapid antidepressant effect but also dissociative side effects. Traxoprodil and lanicemine, also NMDA antagonists, are candidate antidepressant drugs with fewer side effects.

Objectives: In order to understand their mechanism of action, we investigated the acute effects of traxoprodil and lanicemine on brain connectivity using resting-state functional magnetic resonance imaging (rs-fMRI).

View Article and Find Full Text PDF

There is growing evidence that impaired sensory processing significantly contributes to cognitive deficits found in schizophrenia. Electroencephalography (EEG) has become an important preclinical and clinical technique to investigate the underlying mechanisms of neurophysiological dysfunctions in psychiatric disorders. Patients with schizophrenia show marked deficits in auditory event-related potentials (ERP), the detection of deviant auditory stimuli (mismatch negativity, MMN), the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation (ASSR) and reduced auditory-evoked oscillation in the gamma range.

View Article and Find Full Text PDF

BI 425809 is a potent and selective glycine transporter 1 (GlyT1) inhibitor being developed for the treatment of cognitive impairment in Alzheimer disease and schizophrenia. Translational studies evaluated the effects of BI 425809 on glycine levels in rat and human cerebrospinal fluid (CSF). Oral administration of BI 425809 in rats induced a dose-dependent increase of glycine CSF levels from 30% (0.

View Article and Find Full Text PDF

Background And Purpose: Insufficient prefrontal dopamine 1 (D ) receptor signalling has been linked to cognitive dysfunction in several psychiatric conditions. Because the PDE1 isoform B (PDE1B) is postulated to regulate D receptor-dependent signal transduction, in this study we aimed to elucidate the role of PDE1 in cognitive processes reliant on D receptor function.

Experimental Approach: Cognitive performance of the D receptor agonist, SKF38393, was studied in the T-maze continuous alternation task and 5-choice serial reaction time task.

View Article and Find Full Text PDF

Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency.

View Article and Find Full Text PDF

In mammals, hippocampal and striatal regions are engaged in separable cognitive processes usually assessed through species-specific paradigms. To reconcile cognitive testing among species, translational advantages of the touchscreen-based automated method have been recently promoted. However, it remains undetermined whether similar neural substrates would be involved in such behavioral tasks both in humans and rodents.

View Article and Find Full Text PDF

Although many clinical pathological states are now detectable using imaging and biochemical analyses, neuropsychological tests are often considered as valuable complementary approaches to confirm diagnosis, especially for disorders like Alzheimer's or Parkinson's disease, and schizophrenia. The touchscreen-based automated test battery, which was introduced two decades ago in humans to assess cognitive functions, has recently been successfully back-translated in monkeys and rodents. We focused on optimizing the protocol of three distinct behavioral paradigms in mice: two variants of the Paired Associates Learning (PAL) and the Visuo-Motor Conditional Learning (VMCL) tasks.

View Article and Find Full Text PDF

The cyclic nucleotide cGMP is an important intracellular messenger for synaptic plasticity and memory function in rodents. Therefore, inhibition of cGMP degrading phosphodiesterases, like PDE9A, has gained interest as potential target for treatment of cognition deficits in indications like Alzheimer's disease (AD). In fact, PDE9A inhibition results in increased hippocampal long-term potentiation and exhibits procognitive effects in rodents.

View Article and Find Full Text PDF

The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation.

View Article and Find Full Text PDF

Donepezil is the current standard symptomatic treatment of mild-to-moderate Alzheimer's disease (AD) patients. It aims to compensate for the deficit in cholinergic neurotransmission by blocking acetylcholinesterase (AChE) and thus increases the concentration of extracellular acetylcholine. However, experience from clinical practice demonstrated that AChE inhibitors only have moderate treatment effects.

View Article and Find Full Text PDF

Cyclization of recently reported linear phosphino dipeptide isostere inhibitors of BACE1 via side chain olefin metathesis yielded macrocyclic BACE1 inhibitors. The most potent compound II-P1 (IC(50) of 47nM) and the corresponding linear analog I were tested for serum stability. The approach led to three times prolonged half life serum stability of 44min for the macrocyclic inhibitor II-P1 compared to the linear compound I.

View Article and Find Full Text PDF

Glycogen synthase kinase (GSK)-3beta is recognized as a ubiquitous multifunctional enzyme involved in the modulation of many aspects of neuronal function. Inhibitory control of GSK-3beta has been identified to be crucial for the phosphoinositide 3'-kinase (PI3K)-protein kinase B (Akt)-mediated cell survival. Several lines of evidence converge in implicating abnormal GSK-3beta activity in the pathogenesis of schizophrenia.

View Article and Find Full Text PDF

Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs.

View Article and Find Full Text PDF

Phosphino dipeptide (PDP) isosteres are known to be useful analogues of the transition state of metalloprotease substrates. Here we describe the use of this unit for the design of aspartic protease inhibitors. A PDP analogue of OM00-3, a potent BACE1 inhibitor, was synthesized and exhibited high biological activity (IC50 approximately 12 nM).

View Article and Find Full Text PDF