High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown.
View Article and Find Full Text PDFAlthough placental membrane transporters have an important impact on materno-fetal nutrient transfer, placental cell models are poorly characterized regarding transporter expression. We assessed the mRNA expression of 26 physiologically important solute carriers and ABC transporters in BeWo (b30 clone) and primary human trophoblast cells (PHT) before and after syncytialization. 77% of the transporters showed similar mRNA expression changes between BeWo and PHT after syncytialization.
View Article and Find Full Text PDFCholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear.
View Article and Find Full Text PDFCell-based studies previously showed that the ATP-binding cassette transporter A1 (ABCA1) transfers cholesterol across mammary epithelial cells (MEC). Data for phospholipid transport are lacking, and it is unclear from which cellular source the transported cholesterol stems, whether this transport activates signaling pathways, and how lactogenic hormones regulate it. To clarify these aspects, lipid transport and expressional analyses were performed in bovine primary (bMEC) and/or immortalized (MAC-T) MEC cultures.
View Article and Find Full Text PDF