Publications by authors named "Cornard J"

The influence of the composition of the functional used for density functional theory computations on one structural parameter (a dihedral angle) and a spectroscopic parameter (absorption wavelength) is assessed in this study on the basis of two molecules (flavonols). In this kind of molecules, these two parameters should be correlated according to the nature of the electronic transition involved. However, it is shown herein that by varying the proportion of true exchange and correlation while building a functional, it is possible to obtain independently a large range of values for these parameters without any relation with the underlying real values.

View Article and Find Full Text PDF

In this work, we investigated for the first time morin in MeOH at different pH values by picosecond time-resolved fluorescence. We identified the two species responsible for the fluorescence at low and high pH. The solvated morin-solvent hydrogen-bonded complex has been experimentally observed for the first time.

View Article and Find Full Text PDF

2',3-Dihydroxyflavone (2'3HF) is a natural flavonol that has barely ever been studied, however the scarce studies of its physico-chemical properties have highlighted its atypical behaviour. We present a structural and spectral study of 2'3HF, performed using UV-visible absorption and fluorescence spectroscopies, coupled with DFT and TD-DFT calculations. Although its structure is close to that of 3-hydroxyflavone, 2'3HF shows a much lower p value.

View Article and Find Full Text PDF

After mixing HZSM-5 single crystals and solid t-stilbene, micro Raman mapping and micro fluorescence emission imaging provide evidence of the adsorption, spontaneous ionization and diffusion of the guest into the pores of zeolite. The experiments provide evidence of both radical cation and subsequent charge transfer complexes (CTC). Using a set of excitation wavelengths, Raman spectra of different charge separated states (CSS) were identified by taking advantage of the resonance effect; the correct assignment of the species stabilized in the single crystal is confirmed by analysis of the reference CSS stabilized in powder samples.

View Article and Find Full Text PDF

Morin (2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) is an abundant flavonoid with various pharmacological and biological activities. Considering the ubiquitous presence of calcium cations in biological systems, it seems relevant to study the interaction of this ion with morin and the influence of pH on this system. In a first step, among the four hypothetical chelation sites, the preferential fixing site, its protonation state and the Ca environment have been determined by combining electronic spectroscopies and density functional theory (DFT) and time-dependent DFT calculations.

View Article and Find Full Text PDF

The quality and quantity of natural organic matter (NOM) has been observed to evolve which poses challenges to water treatment facilities. Even though NOM may not be toxic itself, its presence in water has aesthetic effects, enhances biological growth in distribution networks, binds with pollutants and controls the bioavailability of trace metals. Even though NOM has heterogeneous functional groups, the predominant ones are the carboxyl and the phenolic groups, which have high affinities for metals depending on the pH.

View Article and Find Full Text PDF

Odorant-binding proteins (OBP) are secreted in the nasal mucus at the vicinity of olfactory receptors (ORs). They act, at least, as an interface between hydrophobic and volatile odorant molecules and the hydrophilic medium bathing the ORs. They have also been hypothesized to be part of the molecular coding of odors and pheromones, by forming specific complexes with odorant molecules that could ultimately stimulate ORs to trigger the olfactory transduction cascade.

View Article and Find Full Text PDF

The aim of this paper is to better understand the functioning of the River Selle (northern France) during dry weather and storm events, to assess the impact of a town on the surface water quality and to suggest qualitative assumptions on the vulnerability of water quality to weather conditions. Two high-frequency monitoring stations covering the Cateau-Cambrésis town were deployed during 4 months in 2016. River flow, water temperature, pH, dissolved oxygen, turbidity, conductivity, total organic carbon, nitrates and phosphates were monitored every 10 min.

View Article and Find Full Text PDF

The current study aims at obtaining a better understanding of the mechanisms involved in the complexation of copper ions by 3-hydroxyflavone (3HF), which is one of the most studied compounds of the flavonoid family. To achieve this goal, quantum chemistry calculations combined with electronic spectroscopies, including absorption, fluorescence emission, and excitation, have been used. The formation of successive complexes of stoichiometry (metal/ligand) 1:2, 1:1, and 3:2 has been highlighted.

View Article and Find Full Text PDF

Quantum chemical calculations using density functional theory have revealed that the substitution of the ketone group by a thioketone one doesn't significantly change the structure of 3-hydroxyflavone. Notably, the strong intramolecular hydrogen bond involving the hydroxyl function is preserved if the O atom is substituted by an S atom, but also by Se or Te atoms. However, fundamental modifications are observed in both absorption and emission electronic spectra upon substitution, particularly the non-fluorescent behavior of the flavothione.

View Article and Find Full Text PDF

The stereochemical activity of the lone pair on Pb complexes is assessed using several theoretical methods, including structural analyses, computations of Fukui functions, natural bond orbitals, electron localization function, investigation of the electron density and of its laplacian. The attention is focused on four octadentate N-carbamoylmethyl-substituted tetraazamacrocycles of various ring sizes ranging from 8 to 14 atoms associated with the Pb cation. The theoretical study illustrates the geometrical constraints imposed by the ring structure which limits the spatial development of the lone pair but without fully preventing it.

View Article and Find Full Text PDF

The confinement effect on the complexation process of Cu(ii) by 3-hydroxyflavone (3HF) was investigated by studying 3HF incorporation in channel-type copper-containing ZSM-5 and mordenite (MOR) zeolites characterized by different pore diameters. Complementary electronic and vibrational spectroscopy techniques point out two distinct behaviors upon 3HF sorption and subsequent complexation depending on the channel diameter in CuZSM-5 and CuMOR. To determine the influence of the internal environment on the interaction between the copper cation and the guest molecule, and to predict the structure of the complexes formed within the narrow-pore ZSM-5 and in the larger pore mordenite, the vibrational spectra of the complexes were calculated using quantum chemical calculations at the DFT level.

View Article and Find Full Text PDF

Due to its chemical and photochemical properties and potential applications in numerous domains as a molecular probe, 3-hydroxyflavone (3HF) is a molecule of high interest. In particular, the processes of intramolecular proton transfer in the excited state and metallic complexation are known to be dependent on the chemical environment. In this context, the particular properties of zeolites make these microporous materials an environment adapted to study the reactivity of isolated molecules adsorbed in their porous void space.

View Article and Find Full Text PDF

The thermodynamics and kinetics of the cis/trans isomerism of N-methylacetohydroxamic acid (NMAH) and its conjugated base (NMA(-)) have been reinvestigated in aqueous media by (1)H NMR spectroscopy. Hindered rotation around the central C-N bond due to electronic delocalization becomes slow enough on the NMR time scale to observe both rotamers in equilibrium in D2O at room temperature. By properly assigning the methyl group resonances, evidence for the prevalence of the E over the Z form is unambiguously provided [K300=[E]/[Z]=2.

View Article and Find Full Text PDF

UV-visible absorption spectroscopy combined with quantum chemical calculations and, notably, Time-Dependent Density Functional Theory were used to probe the structure of metal complexes with esculetin in dilute aqueous solution, at pH = 5. For the 1:1 complex formation, the studied metal ions can be classified according to their complexing power: aluminum(III) > copper(II) > lead(II). For the three complexes, a chelate is formed with the fully deprotonated catechol moiety and an absorption band is observed at the same wavelength.

View Article and Find Full Text PDF

Electronic spectroscopy techniques with the aid of quantum chemical calculations, and notably the Time-Dependent Density Functional Theory, can be used to probe the structure of metal complexes in solution. Here, we report the characterization of Al(III)-protocatechuate in aqueous solution, at pH=6.5.

View Article and Find Full Text PDF

Enhancement of the water solubility by disruption of molecular planarity has recently been reviewed as a feasible approach in small-molecule drug discovery programs. We applied this strategy to some natural flavone glycosides, especially diosmin, a highly insoluble citroflavonoid prescribed as an oral phlebotropic drug. Disruption of planarity at the aglycone moiety by 3-bromination or chlorination afforded 3-bromo- and 3-chlorodiosmin, displaying a dramatic solubility increase compared with the parent compound.

View Article and Find Full Text PDF

A detailed spectrofluorimetric study on quercetin in aqueous solution proves that its anionic forms are responsible for a strong fluorescence enhancement observed at pH > 6. Anion fluorescence is also observed in organic solvents with strong hydrogen bond acceptor properties. The results provide a new interpretation of biophysical and analytical literature data where the fluorescence of the anionic forms of quercetin has never been explicitly taken into account.

View Article and Find Full Text PDF

Native porcine odorant-binding protein (OBP) bears eleven sites of phosphorylation, which are not always occupied in the molecular population, suggesting that different isoforms could co-exist in animal tissues. As phosphorylation is a dynamic process resulting in temporary conformational changes that regulate the function of target proteins, we investigated the possibility that OBP isoforms could display different binding affinities to biologically relevant ligands. The availability of recombinant proteins is of particular interest for the study of protein/ligand structure-function relationships, but prokaryotic expression systems do not perform eukaryotic post-translational modifications.

View Article and Find Full Text PDF

In the present study, structural properties of 3,5-dimethylpyrazole (3,5-DMP) have been studied extensively utilizing density functional theory (DFT) employing B3LYP exchange correlation. The Fourier transform infrared (solid phase and gas phase) and Fourier transform Raman spectra of 3,5-DMP were recorded. The Vibrational frequencies of 3,5-DMP in the ground state have been calculated by using density functional method (B3LYP) with 6-31G(d,p), 6-311G(d,p) and 6-311++G(d,p) as basis sets.

View Article and Find Full Text PDF

Structural and molecular dynamics studies have pointed out the role of aromatic residues in the uptake of ligand by porcine odorant-binding protein (pOBP). The shift of Tyr82 from its position during the opening of the binding cavity has been shown, and was supposed to participate in the entrance of the ligand. Several Phe residues in the vicinity of Tyr82 could also participate in the binding process.

View Article and Find Full Text PDF

In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 2,4-dichloroaniline (2,4-DCA) were studied. The Fourier transform infrared (gas phase) and Fourier transform Raman spectra of 2,4-DCA were recorded. The molecular geometry and vibrational frequencies of 2,4-DCA in the ground state were calculated by using the Hartree-Fock (HF) and density functional (DF) methods (BLYP, B3LYP and SVWN) with 6-31G(d,p) as basis set.

View Article and Find Full Text PDF

Density functional theory (DFT) structure calculations and time-dependent DFT electronic excitation calculations have been performed on chlorogenic acid (H(3)CGA), a polyphenolic compound, used as a model molecule of humic substances. The different deprotonated forms of H(3)CGA have also been investigated. H(3)CGA is a multisite ligand that presents several metal complexing sites in competition, notably the carboxylic and catechol moieties.

View Article and Find Full Text PDF

Protocatechuic acid presents two complexing sites in competition to fix metal: the carboxylic and catechol functions. Even in acidic aqueous medium, where the free ligand is fully protonated, Al(III) forms a chelate with the doubly deprotonated catechol group. To gain a better understanding of the complexation mechanism and to explain the regioselectivity of the reaction, reaction pathways involving either the catechol group or the carboxylic one have been calculated at the B3LYP/6-31G(d,p) level of theory.

View Article and Find Full Text PDF

In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets.

View Article and Find Full Text PDF