High energy visible (HEV) blue light is an increasing source of concern for visual health. Polycyclic aromatic hydrocarbons (PAH), a group of compounds found in high concentrations in smokers and polluted environments, accumulate in the retinal pigment epithelium (RPE). HEV absorption by indeno [1,2,3-cd]pyrene (IcdP), a common PAH, synergizes their toxicities and promotes degenerative changes in RPE cells comparable to the ones observed in age-related macular degeneration.
View Article and Find Full Text PDFLesion to the retinal pigment epithelium (RPE) is a crucial event in the development of age-related macular degeneration (AMD), the leading cause of blindness in industrialized countries. Tobacco smoking and high-energy visible blue (HEV; 400-500 nm) light exposure are major environmental risk factors for AMD. Individually, they have been shown to cause damage to the RPE.
View Article and Find Full Text PDFExposure to sunlight ultraviolet-A (UVA), the main component of solar UV reaching the eyes, is suspected to play an important part in the onset of ocular pathologies. UVA primary biological deleterious effects arise from the photo-induction of oxidative stress in cells. However, the molecular bases linking UVA-induced oxidation to UVA toxicity in eyes remain poorly understood, especially with regards to the cornea.
View Article and Find Full Text PDFPurpose: Human chromosomes are protected at their end by a long portion of hexameric tandem repeats, the telomere. In somatic cells, telomere attrition caused by endogenous and exogenous oxidative stress as well as DNA replication can threaten genomic integrity and lead to the deterioration of tissue functions and an age-related physiological decline. The human eye is a complex organ in which cells of different ocular tissues are exposed to photo-oxidation, high mitochondrial metabolic activity, and/or replicative pressure.
View Article and Find Full Text PDF