A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed.
View Article and Find Full Text PDFWe show that supramolecular chemistry provides a convenient tool to prepare carbone nanotubes (CNTs) that can be dispersed in solvents of any chemical nature, easily recovered and redispersed. Thymine-modified CNTs (CNT-Thy) can be dispersed in solution in the presence of diaminotriazine (DAT) end-functionalized polymers, through supramolecular Thy/DAT association. DAT-polymer chains are selected according to the solvent chemical nature: polystyrene (PS) for hydrophobic/low polarity solvents and a propylene oxide/ethylene oxide copolymer (predominantly propylene oxide based, PPO/PEO) for polar solvents or water.
View Article and Find Full Text PDFWe show here that complementary interactions can suppress mesoscopic order and thus lead to a counterintuitive change in material properties. We present results for telechelic supramolecular polymers based on poly(propylene oxide) (PPO), thymine (Thy), and diaminotriazine (DAT). The self-complementary systems based on Thy exhibit lamellar order and 2D crystallization of Thy in the bulk.
View Article and Find Full Text PDFIn supramolecular polymers, directional interactions control the constituting units connectivity, but dispersion forces may conspire to make complex organizations. Here we report on the long-range order and order-disorder transition (ODT) of main-chain supramolecular polymers based on poly(propylene oxide) (PPO) spacers functionalized on both ends with thymine. Below the ODT temperature (T(ODT)), these compounds are semicrystalline with a lamellar structure, showing nanophase separation between crystallized thymine planes and amorphous PPO layers.
View Article and Find Full Text PDFRubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep.
View Article and Find Full Text PDF