Diversification of cropping systems is a lever for the management of epidemics. However, most research to date has focused on cultivar mixtures, especially for cereals, even though crop mixtures can also improve disease management. To investigate the benefits of crop mixtures, we studied the effect of different crop mixture characteristics (i.
View Article and Find Full Text PDFThe striatum is a major subcortical connection hub that has been heavily implicated in a wide array of motor and cognitive functions. Here, we developed a normative multimodal, data-driven microstructural parcellation of the striatum using non-negative matrix factorization (NMF) based on multiple magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and the ratio between T1- and T2-weighted structural scans) from the Human Connectome Project Young Adult dataset (n = 329 unrelated participants, age range: 22-35, F/M: 185/144). We further explored the biological and functional relationships of this parcellation by relating our findings to motor and cognitive performance in tasks known to involve the striatum as well as demographics.
View Article and Find Full Text PDFShoot architecture is a key component of the interactions between plants and their environment. We present a novel model of grass, which fully integrates shoot morphogenesis and the metabolism of carbon (C) and nitrogen (N) at organ scale, within a three-dimensional representation of plant architecture. Plant morphogenesis is seen as a self-regulated system driven by two main mechanisms.
View Article and Find Full Text PDFOne of the conclusions of evolutionary ecology applied to agroecosystem management is that sustainable disease management strategies must be adaptive to overcome the immense adaptive potential of crop pathogens. In this context, knowledge of how pathogens adapt to changes in cultural practices is necessary. In this article we address the issue of the evolutionary response of biotrophic crop pathogens to changes in fertilization practices.
View Article and Find Full Text PDFWe performed a meta-analysis to search for a relation between the trophic type and latent period of fungal pathogens. The pathogen incubation period and the level of resistance of the hosts were also investigated. This ecological knowledge would help us to more efficiently regulate crop epidemics for different types of pathogens.
View Article and Find Full Text PDFBackground And Aims: In order to optimize crop management in innovative agricultural production systems, it is crucial to better understand how plant disease epidemics develop and what factors influence them. This study explores how canopy growth, its spatial organization and leaf senescence impact Zymoseptoria tritici epidemics.
Methods: We used the Septo3D model, an epidemic model of Septoria tritici blotch (STB) coupled with a 3-D virtual wheat structural plant model (SPM).
Background And Aims: Disease models can improve our understanding of dynamic interactions in pathosystems and thus support the design of innovative and sustainable strategies of crop protections. However, most epidemiological models focus on a single type of pathogen, ignoring the interactions between different parasites competing on the same host and how they are impacted by properties of the canopy. This study presents a new model of a disease complex coupling two wheat fungal diseases, caused by Zymoseptoria tritici (septoria) and Puccinia triticina (brown rust), respectively, combined with a functional-structural plant model of wheat.
View Article and Find Full Text PDFCrop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to fertilization regimes and no epidemiological model has addressed that question. However, this is a critical issue for developing sustainable low-input agriculture.
View Article and Find Full Text PDFBackground And Aims: Sustainable agriculture requires the identification of new, environmentally responsible strategies of crop protection. Modelling of pathosystems can allow a better understanding of the major interactions inside these dynamic systems and may lead to innovative protection strategies. In particular, functional-structural plant models (FSPMs) have been identified as a means to optimize the use of architecture-related traits.
View Article and Find Full Text PDFBackground And Aims: The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat-Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments.
Methods: A field experiment was performed with winter wheat 'Soissons' grown at three contrasted densities.
The development of dynamic models jointly to simulate host growth and disease spread necessitates a precise description of pathogen dispersal in relation to canopy structure. In this study, we measured disease spread from a single infected leaf positioned at different heights in wheat canopies. The resulting lesion distribution was described along crop rows and over three leaf layers.
View Article and Find Full Text PDFExperimental evidence on the capacity of pathogen populations to quantitatively adapt to their hosts and on the life traits that are involved is lacking at this time. In this article, we identified a situation in which a leaf rust pathotype (P1) was found at a high frequency on a widely grown cultivar (Soissons) and we tested the hypothesis that P1 was more aggressive on Soissons than other virulent pathotypes (P2 and P3). Several components of the pathogen life cycle were measured on adult wheat plants in two different experiments under greenhouse conditions: latent period, spore production per lesion and per unit of sporulating tissue, uredinium size, and lesion life span.
View Article and Find Full Text PDFThis work initiates a modelling approach that allows us to investigate the effects of canopy architecture on foliar epidemics development. It combines a virtual plant model of wheat (Triticum aestivum L.) with an epidemic model of Septoria tritici which is caused by Mycosphaerella graminicola, a hemi-biotrophic, splashed-dispersed fungus.
View Article and Find Full Text PDFABSTRACT Leaf rust uredospore production and lesion size were measured on flag leaves of adult wheat plants in a glasshouse for different lesion densities. We estimated the spore weight produced per square centimeter of infected leaf, per lesion, and per unit of sporulating area. Three levels of fertilization were applied to the plants to obtain different nitrogen content for the inoculated leaves.
View Article and Find Full Text PDFABSTRACT To develop mechanistic yield loss models for biotrophic fungi, we need better account for the export of dry matter, carbon, and nitrogen from the leaf into the spores. Three experiments in controlled environment chambers were performed to study the dynamics of uredospores production of Puccinia triticina on seedling leaves of wheat in relation to time, lesion density, and sporulating surface area. The detrimental effect of lesion density on the sporulation capacity of brown rust lesions was confirmed.
View Article and Find Full Text PDFCrop protection strategies, based on preventing quantitative crop losses rather than pest outbreaks, are being developed as a promising way to reduce fungicide use. The Bastiaans' model was applied to winter wheat crops (Triticum aestivum) affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (STB; Mycosphaerella graminicola) under a range of crop management conditions. This study examined (a) whether green leaf area per layer accurately accounts for growth loss; and (b) whether from growth loss it is possible to derive yield loss accurately and simply.
View Article and Find Full Text PDFQuantification of the damaging effects of pathogens on diseased plants and inclusion of these damaging functions in crop simulation models is of great importance for a more complete understanding of yield response to diseases. In this study, the effect of Septoria tritici blotch (STB) on net photosynthetic and dark respiration rates of wheat flag leaves was quantified. Bastiaans' model: Y=(1-x)beta was used to characterize the relationship between relative leaf photosynthesis (Y, considering Ynet and Ygross) and STB severity (with x the proportion of the diseased area).
View Article and Find Full Text PDFIn wheat (Triticum aestivum cv. Soissons) plants grown under three different fertilisation treatments, we quantified the effect of leaf rust (Puccinia triticina) on flag leaf photosynthesis during the whole sporulation period. Bastiaans' model: Y = (1 - x)beta was used to characterize the relationship between relative leaf photosynthesis (Y) and disease severity (x).
View Article and Find Full Text PDFA model to predict Septoria tritici blotch (STB) and leaf rust effects on wheat growth was constructed and evaluated in two steps. At the leaf scale, Bastiaans' approach that predicts the relative photosynthesis of a wheat leaf infected with a single disease, was extended to the case of two diseases, one biotrophic and one necrotrophic by considering the leaf rust-STB complex. A glasshouse experiment with flag leaves inoculated either singly with one disease or with two diseases combined was performed to check the leaf damage model.
View Article and Find Full Text PDF