Publications by authors named "Corinne Jankovsky"

Biorelevant dissolution and its concept have been widely accepted and further developed to meaningfully predict the bioperformance of oral drug products. Biorelevant methodologies have been applied to design and optimize oral formulations, to facilitate formulation bridging, and to predict the outcome of bioperformance by coupling the results with modeling. Yet, those methodologies have often been independently customized to align with specific aspects of the oral drug products being developed.

View Article and Find Full Text PDF

Assessing in vivo performance to inform formulation selection and development decisions is an important aspect of drug development. Biopredictive dissolution methodologies for oral dosage forms have been developed to understand in vivo performance, assist in formulation development/optimization, and forecast the outcome of bioequivalence studies by combining them with simulation tools to predict plasma profiles in humans. However, unlike compendial dissolution methodologies, the various biopredictive methodologies have not yet been harmonized or standardized.

View Article and Find Full Text PDF

The intake of food and meal type can strongly impact the bioavailability of orally administered drugs and can consequently impact drug efficacy and safety. During the early stages of drug development, only a small amount of drug substance is available, and the solubility difference between fasted state simulated intestinal fluid and fed state simulated intestinal fluid may provide an early indication about the probable food effect. But higher drug solubility in fed state simulated intestinal fluid may not always results in an increased oral absorption.

View Article and Find Full Text PDF

This review focuses on options available to a pharmaceutical scientist to predict in vivo supersaturation and precipitation of poorly water-soluble drugs. As no single device or system can simulate the complex gastrointestinal environment, a combination of appropriate in vitro tools may be utilized to get optimal predictive information. To address the empirical issues encountered during small-scale and full-scale in vitro predictive testing, theoretical background and relevant case studies are discussed.

View Article and Find Full Text PDF

This study examined the use of focused beam reflectance measurement (FBRM) for qualitative and quantitative analysis of pharmaceutical suspensions with particular application to toxicology supply preparations for use in preclinical studies. Aqueous suspensions of ibuprofen were used as prototype formulations. Initial experiments were conducted to examine the effects of operational conditions including FBRM probe angle, probe location, and mixing (method and rate of mixing) on the FBRM analysis.

View Article and Find Full Text PDF

pH stress testing is an integral part of pharmaceutical stress testing and is a regulatory requirement for validating a stability indicating analytical method and elucidating degradation products and degradation pathways. This paper reports the results of an evaluation of iChemExplorer (ICE) for drug substance and drug product pH stress testing in comparison with the conventional (manual) approach. ICE is a simple and inexpensive technology, and through real case studies it was demonstrated that ICE is an efficient and "fit-for-purpose" alternative in conducting pharmaceutical pH stress testing.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs.

Methods: The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate.

View Article and Find Full Text PDF