Publications by authors named "Corinne Cruaud"

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.

View Article and Find Full Text PDF
Article Synopsis
  • Brown seaweeds are vital to coastal ecosystems, but they are threatened by climate change, prompting a detailed genetic study.
  • The research traced the evolutionary history of brown algae, highlighting significant gene families and metabolic pathways related to their adaptation and functional diversity.
  • Findings also indicated that the integration of large viral genomes has played a crucial role in shaping the genetics and traits of brown algal species over time.
View Article and Find Full Text PDF
Article Synopsis
  • A genomic database encompassing all eukaryotic species on Earth is crucial for scientific advancements, yet most species lack genomic data.
  • The Earth BioGenome Project (EBP) was initiated in 2018 by global scientists to compile high-quality reference genomes for approximately 1.5 million recognized eukaryotic species.
  • The European Reference Genome Atlas (ERGA) launched a Pilot Project to create a decentralized model for reference genome production by testing it on 98 species, providing valuable insights into scalability, equity, and inclusiveness for genomic projects.
View Article and Find Full Text PDF

An exhaustive analysis was performed on more than 2000 microbiotas from French Protected Designation of Origin (PDO) cheeses, covering most cheese families produced throughout the world. Thanks to a complete and accurate set of associated metadata, we have carried out a deep analysis of the ecological drivers of microbial communities in milk and "terroir" cheeses. We show that bacterial and fungal microbiota from milk differed significantly across dairy species while sharing a core microbiome consisting of four microbial species.

View Article and Find Full Text PDF

A single strain of Candida anglica, isolated from cider, is available in international yeast collections. We present here seven new strains isolated from French PDO cheeses. For one of the cheese strains, we achieved a high-quality genome assembly of 13.

View Article and Find Full Text PDF

Biosourced and biodegradable plastics offer a promising solution to reduce environmental impacts of plastics for specific applications. Here, we report a novel bacterium named Alteromonas plasticoclasticus MED1 isolated from the marine plastisphere that forms biofilms on foils of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Experiments of degradation halo, plastic matrix weight loss, bacterial oxygen consumption and heterotrophic biosynthetic activity showed that the bacterial isolate MED1 is able to degrade PHBV and to use it as carbon and energy source.

View Article and Find Full Text PDF

Background: Leptosphaeria maculans "brassicae" (Lmb) and Leptosphaeria biglobosa "brassicae" (Lbb) make up a species complex involved in the stem canker (blackleg) disease of rapeseed (Brassica napus). They coinfect rapeseed together, from the early stage of infection on leaves to the final necrotic stage at the stem base, and both perform sexual crossings on plant residues. L.

View Article and Find Full Text PDF
Article Synopsis
  • High-throughput sequencing has revealed a vast variety of microbial eukaryotes in aquatic ecosystems, particularly in freshwater lakes, but their roles in food webs are still not well understood.
  • Research conducted in Lake Pavin, France, utilized metabarcoding and metatranscriptomic data to identify functional groups of these microbial eukaryotes and their metabolic activities across different environmental conditions.
  • Findings indicated significant microbial diversity, with numerous saprotrophs involved in nutrient cycling and seasonal variations affecting types of microbial eukaryotes, particularly highlighting the impact of water mixing on both beneficial and parasitic organisms.
View Article and Find Full Text PDF

Background: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species.

Results: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf.

View Article and Find Full Text PDF

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e.

View Article and Find Full Text PDF

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming.

View Article and Find Full Text PDF

Marine planktonic eukaryotes play critical roles in global biogeochemical cycles and climate. However, their poor representation in culture collections limits our understanding of the evolutionary history and genomic underpinnings of planktonic ecosystems. Here, we used 280 billion Oceans metagenomic reads from polar, temperate, and tropical sunlit oceans to reconstruct and manually curate more than 700 abundant and widespread eukaryotic environmental genomes ranging from 10 Mbp to 1.

View Article and Find Full Text PDF

The smallest phytoplankton species are key actors in oceans biogeochemical cycling and their abundance and distribution are affected with global environmental changes. Among them, algae of the Pelagophyceae class encompass coastal species causative of harmful algal blooms while others are cosmopolitan and abundant. The lack of genomic reference in this lineage is a main limitation to study its ecological importance.

View Article and Find Full Text PDF

We report the complete genome sequence of sp. strain 8C15b, isolated from bank sediments of Haiphong Bay, Vietnam. The genome includes a 3,628,320-bp circular chromosome and a plasmid of 38,213 bp.

View Article and Find Full Text PDF

Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea.

View Article and Find Full Text PDF

Microbial communities from cheeses contribute to the development of typical organoleptic properties. Metatranscriptomic analyses can be used to provide a global picture of the functioning of these communities. Our objective was to evaluate the efficiency of RNA extraction from various cheese types and to evaluate mRNA enrichment procedures for metatranscriptomic analyses.

View Article and Find Full Text PDF

Background: The sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years owing to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read sequencing with many other resources.

View Article and Find Full Text PDF

Background: Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection.

View Article and Find Full Text PDF

Co-sexuality has evolved repeatedly from unisexual (dioicous) ancestors across a wide range of taxa. However, the molecular changes underpinning this important transition remain unknown, particularly in organisms with haploid sexual systems such as bryophytes, red algae and brown algae. Here we explore four independent events of emergence of co-sexuality from unisexual ancestors in brown algal clades to examine the nature, evolution and degree of convergence of gene expression changes that accompany the breakdown of dioicy.

View Article and Find Full Text PDF

In the study of the evolution of biological complexity, a reliable phylogenetic framework is needed. Many attempts have been made to resolve phylogenetic relationships between higher groups (i.e.

View Article and Find Full Text PDF

Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution.

View Article and Find Full Text PDF