With the discovery of carcinogenic nitrosamine impurities in pharmaceuticals in 2018 and subsequent regulatory requirements for risk assessment for nitrosamine formation during pharmaceutical manufacturing processes, storage or from contaminated supply chains, effective testing of nitrosamines has become essential to ensure the quality of drug substances and products. Mass spectrometry has been widely applied to detect and quantify trace amounts of nitrosamines in pharmaceuticals. As part of an effort by regulatory authorities to assess the measurement variation in the determination of nitrosamines, an inter-laboratory study was performed by the laboratories from six regulatory agencies with each of the participants using their own analytical procedures to determine the amounts of nitrosamines in a set of identical samples.
View Article and Find Full Text PDFThis manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2014
A GC/MS method was developed for the identification and quantification of 14 phthalates: 8 phthalates classified H360 (DBP, DEHP, BBP, DMEP, DnPP, DiPP, DPP and DiBP), 3 phthalates proposed to be forbidden in medical devices (DnOP, DiNP and DiDP) and 3 other phthalates none regulated (DMP, DCHP and DEP) which may interfere with hormone function. In order to identify and quantify other plasticizers that are commonly used in PVC medical devices such as DEHP substitute, 5 non-phthalate plasticizers (ATBC, DEHA, DEHT, TOTM, and DINCH) were included in this study. Analyses are carried out on a GC/MS system with electron impact ionization mode (EI).
View Article and Find Full Text PDFEsters of phthalic acid, more commonly named phthalates, may be present in cosmetic products as ingredients or contaminants. Their presence as contaminant can be due to the manufacturing process, to raw materials used or to the migration of phthalates from packaging when plastic (polyvinyl chloride--PVC) is used. 8 phthalates (DBP, DEHP, BBP, DMEP, DnPP, DiPP, DPP, and DiBP), classified H360 or H361, are forbidden in cosmetics according to the European regulation on cosmetics 1223/2009.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2007
Three classes of antiretroviral agents are usually available for the treatment of HIV infection: nucleoside reverse transcriptase inhibitors (IN), non-nucleoside reverse transcriptase inhibitors (INN) and protease inhibitors (IP). Two methods by reversed-phase liquid chromatography were developed for the analysis of 19 antiretroviral molecules belonging to these three therapeutic classes and used in medicinal products. Both of these HPLC techniques use a C18 column and UV detection.
View Article and Find Full Text PDF