Publications by authors named "Corinne Biderre-Petit"

Article Synopsis
  • Telonemia are ancient marine protists with established evolutionary links to the SAR supergroup, but their ecological roles and distribution in freshwater environments remain under-researched.
  • A global study of over a thousand freshwater metagenomes and 407 samples from lakes revealed a wide distribution of Telonemia, though no new major clades were identified, indicating their diversity is well-represented in current surveys.
  • Findings suggest Telonemia prefer colder, deeper areas of lakes in the Northern Hemisphere, where they can make up 10%-20% of the heterotrophic flagellate population, highlighting their significance in freshwater food webs.
View Article and Find Full Text PDF

The ongoing discussion regarding the use of mixed or pure cultures of hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess applications persists, with each option presenting its own advantages and disadvantages. To address this issue, a comparison of methane (CH) yield between a novel methanogenic archaeon belonging to the species Methanothermobacter marburgensis (strain Clermont) isolated from a biological methanation column, and the community from which it originated, was conducted. This comparison included the type strain M.

View Article and Find Full Text PDF

The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake.

View Article and Find Full Text PDF

Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems.

View Article and Find Full Text PDF

Bacterial populations differentiate over time and space to form distinct genetic units. The mechanisms governing this diversification are presumed to result from the ecological context of living units to adapt to specific niches. Recently, a model assuming the acquisition of advantageous genes among populations rather than whole genome sweeps has emerged to explain population differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Basaltic rocks help sequester CO2 during weathering and support diverse microbial and plant communities, which can positively affect climate balance.
  • The study focused on microbial communities in soils from lava flows on Fogo Island, revealing low carbon/nitrogen content and similar phylogenetic compositions dominated by Actinobacteria and Proteobacteria.
  • Results indicate that organic carbon significantly influences microbial composition more than lava age, and a notable presence of archaea suggests important roles in ammonia oxidation in these environments.
View Article and Find Full Text PDF

Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle.

View Article and Find Full Text PDF

Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences.

View Article and Find Full Text PDF
Article Synopsis
  • Deep lakes provide unique environments for studying archaeal communities due to their chemical stratification, which creates diverse ecological niches.
  • Monthly investigations over a year revealed distinct patterns in the active archaeal communities between two deep lakes, reflecting their different environmental conditions.
  • The study highlighted that not all Thaumarchaeota perform nitrification, and there is potential for uncharacterized archaeal groups to play significant roles in nutrient cycling within these lake ecosystems.
View Article and Find Full Text PDF

Wood ash addition to biogas plants represents an alternative to commonly used landfilling by improving the reactor performance, raising the pH and alleviating potential limits of trace elements. This study is the first on the effects of wood ash on reactor conditions and microbial communities in cattle slurry-based biogas reactors. General process parameters [temperature, pH, electrical conductivity, ammonia, volatile fatty acids, carbon/nitrogen (C/N), total solids (TS), volatile solids, and gas quantity and quality] were monitored along with molecular analyses of methanogens by polymerase chain reaction- denaturing gradient gel electrophoresis and modern microarrays (archaea and bacteria).

View Article and Find Full Text PDF

Next-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake.

View Article and Find Full Text PDF

High-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes.

View Article and Find Full Text PDF

The bioremediation of chloroethene contaminants in groundwater polluted systems is still a serious environmental challenge. Many previous studies have shown that cooperation of several dechlorinators is crucial for complete dechlorination of trichloroethene to ethene. In the present study, we used an explorative functional DNA microarray (DechloArray) to examine the composition of specific functional genes in groundwater samples in which chloroethene bioremediation was enhanced by delivery of hydrogen-releasing compounds.

View Article and Find Full Text PDF

We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines.

View Article and Find Full Text PDF

Designing environmental DNA microarrays that can be used to survey the extreme diversity of microorganisms existing in nature, represents a stimulating challenge in the field of molecular ecology. Indeed, recent efforts in metagenomics have produced a substantial amount of sequence information from various ecosystems, and will continue to accumulate large amounts of sequence data given the qualitative and quantitative improvements in the next-generation sequencing methods. It is now possible to take advantage of these data to develop comprehensive microarrays by using explorative probe design strategies.

View Article and Find Full Text PDF

The atmospheric concentration of methane (CH(4)), a major greenhouse gas, is mainly controlled by the activities of methane-producing (methanogens) and methane-consuming (methanotrophs) microorganisms. Freshwater lakes are identified as one of the main CH(4) sources, as it was estimated that they contribute to 6-16% of natural CH(4) emissions. It is therefore critical to better understanding the biogeochemical cycling of CH(4) in these ecosystems.

View Article and Find Full Text PDF

Biological degreasing system is a new technology based on the degradation capabilities of microorganisms to remove oil, grease, or lubricants from metal parts. No data is available about the potential biological health hazards in such system. Thus, a health risk assessment linked to the bacterial populations present in this new degreasing technology is, therefore, necessary for workers.

View Article and Find Full Text PDF

Lake Pavin is a meromictic crater lake located in the French Massif Central area. In this ecosystem, most methane (CH(4)) produced in high quantity in the anoxic bottom layers, and especially in sediments, is consumed in the water column, with only a small fraction of annual production reaching the atmosphere. This study assessed the diversity of methanogenic and methanotrophic populations along the water column and in sediments using PCR and reverse transcription-PCR-based approaches targeting functional genes, i.

View Article and Find Full Text PDF

Motivation: The use of DNA microarrays allows the monitoring of the extreme microbial diversity encountered in complex samples like environmental ones as well as that of their functional capacities. However, no probe design software currently available is adapted to easily design efficient and explorative probes for functional gene arrays.

Results: We present a new efficient functional microarray probe design algorithm called HiSpOD (High Specific Oligo Design).

View Article and Find Full Text PDF

Geochemical researches at Lake Pavin, a low-sulfate-containing freshwater lake, suggest that the dominant biogeochemical processes are iron and sulfate reduction, and methanogenesis. Although the sulfur cycle is one of the main active element cycles in this lake, little is known about the sulfate-reducer and sulfur-oxidizing bacteria. The aim of this study was to assess the vertical distribution of these microbes and their diversities and to test the hypothesis suggesting that only few SRP populations are involved in dissimilatory sulfate reduction and that Epsilonproteobacteria are the likely key players in the oxidative phase of sulfur cycle by using a PCR aprA gene-based approach in comparison with a 16S rRNA gene-based analysis.

View Article and Find Full Text PDF

Background: Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments.

View Article and Find Full Text PDF

To organize data resulting from the phenotypic characterization of a library of 30,000 T-DNA enhancer trap (ET) insertion lines of rice (Oryza sativa L cv. Nipponbare), we developed the Oryza Tag Line (OTL) database (http://urgi.versailles.

View Article and Find Full Text PDF

Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions.

View Article and Find Full Text PDF

Growth of the maize (Zea mays) endosperm is tightly regulated by maternal zygotic and sporophytic genes, some of which are subject to a parent-of-origin effect. We report here a novel gene, maternally expressed gene1 (meg1), which shows a maternal parent-of-origin expression pattern during early stages of endosperm development but biallelic expression at later stages. Interestingly, a stable reporter fusion containing the meg1 promoter exhibits a similar pattern of expression.

View Article and Find Full Text PDF