Publications by authors named "Corinne A Boulanger"

The influence of breast cancer cells on normal cells of the microenvironment, such as fibroblasts and macrophages, has been heavily studied but the influence of normal epithelial cells on breast cancer cells has not. Here using and models we demonstrate the impact epithelial cells and the mammary microenvironment can exert on breast cancer cells. Under specific conditions, signals that originate in epithelial cells can induce phenotypic and genotypic changes in cancer cells.

View Article and Find Full Text PDF

One major foundation of cancer etiology is the process of clonal expansion. The mechanisms underlying the complex process of a single cell leading to a clonal dominant tumor, are poorly understood. Our study aims to analyze mitochondrial DNA (mtDNA) for somatic single nucleotide polymorphisms (SNPs) variants, to determine if they are conserved throughout clonal expansion in mammary tissues and tumors.

View Article and Find Full Text PDF

Long-label retention has been used by many to prove Cairns' immortal strand hypothesis and to identify potential stem cells. Here, we describe two strategies using 5-ethynl-2'-deoxyuridine (EdU) to identify and understand the distribution of long-label-retaining mammary epithelial cells during formation of the mouse mammary ductal system. First, EdU was given upon two consecutive days per week during weeks 4 through 10 and analyzed for label retention at 13 weeks of age.

View Article and Find Full Text PDF

Microarray technologies were used to analyze transcriptomes from Comma-Dβ and clonal derivatives, SP3 (Lobule-competent) and NSP2 (Lobule-incompetent), during different mouse mammary growth phases: , 5-weeks, and 12-weeks. A differentially expressed gene (DEG) algorithm was used to enrich for genes associated with cellular proliferation, differentiation, cell cycle regulation, and carcinogenesis. A pairwise comparison analysis, of SP3 vs.

View Article and Find Full Text PDF

Amphiregulin (AREG) mice demonstrate impaired mammary development and form only rudimentary ductal epithelial trees; however, AREG glands are still capable of undergoing alveologenesis and lactogenesis during pregnancy. Transplantation of AREG mammary epithelial cells into cleared mouse mammary fat pads results in a diminished capacity for epithelial growth (∼15%) as compared to that of wild-type mammary epithelial cells. To determine whether estrogen receptor α (ERα, also known as ESR1) and/or AREG signaling were necessary for non-mammary cell redirection, we inoculated either ERα or AREG mammary cells with non-mammary progenitor cells (WAP-Cre/Rosa26LacZ+ male testicular cells or GFP-positive embryonic neuronal stem cells).

View Article and Find Full Text PDF

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo.

View Article and Find Full Text PDF

This chapter considers the techniques necessary and required for the reprogramming of exogenous stem/progenitor cell populations towards a mammary epithelial cell fate. The protocols describe how to isolate cells from alternate mouse organs such as testicles of male mice and mix them with mammary cells to generate chimeric glands comprised of male and female epithelial cells that are fully competent. During the reformation of mammary stem cell niches by dispersed epithelial cells, in the context of the intact epithelium-free mammary stroma, non-mammary cells are sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.

View Article and Find Full Text PDF

It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/-), and homozygous (TER-/-) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth.

View Article and Find Full Text PDF

Mammotropic hormones and growth factors play a very important role in mammary growth and differentiation. Here, hormones including Estrogen, Progesterone, Prolactin, their cognate receptors, and the growth factor Amphiregulin, are tested with respect to their roles in signaling non-mammary cells from the mouse to redirect to mammary epithelial cell fate(s). This was done in the context of glandular regeneration in pubertal athymic female mice.

View Article and Find Full Text PDF

We have previously shown that non-mammary and tumorigenic cells can respond to the signals of the mammary niche and alter their cell fate to that of mammary epithelial progenitor cells. Here we tested the hypothesis that paracrine signals from mammary epithelial cells expressing progesterone receptor (PR) are dispensable for redirection of testicular cells, and that re-directed wild-type testicular-derived mammary cells can rescue lobulogenesis of PR-null mammary epithelium by paracrine signaling during pregnancy. We injected PR-null epithelial cells mixed with testicular cells from wild-type adult male mice into cleared fat-pads of recipient mice.

View Article and Find Full Text PDF

Experiments were conducted to redirect mouse Embryonic Stem (ES) cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads.

View Article and Find Full Text PDF

Mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue leads to a reduced capacity of dispersed epithelial cells to recapitulate complete functional mammary structures. Previous studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the mammary stroma, nonmammary cells of ectodermal germ origin may be sequestered and reprogrammed to perform mammary epithelial cell (MEC) functions, including those ascribed to mammary stem/progenitor cells.

View Article and Find Full Text PDF

Prominin-1 (Prom1) is recognized as a stem cell marker in several tissues, including blood, neuroepithelium, and gut, and in human and mouse embryos and many cancers. Although Prom1 is routinely used as a marker for isolating stem cells, its biological function remains unclear. Here we use a knockout model to investigate the role of Prom1 in the mammary gland.

View Article and Find Full Text PDF

Introduction: During selective segregation of DNA, a cell asymmetrically divides and retains its template DNA. Asymmetric division yields daughter cells whose genome reflects that of the parents', simultaneously protecting the parental cell from genetic errors that may occur during DNA replication. We hypothesized that long-lived epithelial cells are present in immortal, premalignant cell populations, undergo asymmetric division, retain their template DNA strands, and cycle both during allometric growth and during pregnancy.

View Article and Find Full Text PDF

The tissue microenvironment directs stem/progenitor cell behavior. Cancer cells are also influenced by the microenvironment. It has been shown that, when placed into blastocysts, cancer cells respond to embryonic cues and differentiate according to the tissue type encountered during ontological development.

View Article and Find Full Text PDF

Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation.

View Article and Find Full Text PDF

The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution.

View Article and Find Full Text PDF

An entire mammary epithelial outgrowth, capable of full secretory differentiation, may comprise the progeny of a single cellular antecedent. This conclusion is based upon the maintenance of retroviral insertion sites within the somatic DNA of successive transplant generations derived from a single mammary fragment. In addition, dissociation of these clonal dominant glands and implantation of dispersed cells at limiting dilution demonstrated that both duct-limited and lobule-limited outgrowths were developed as well as complete, fully differentiated glands.

View Article and Find Full Text PDF

Introduction: During pregnancy the mammary epithelial compartment undergoes extreme proliferation and differentiation, facilitated by stem/progenitor cells. Mouse mammary epithelium in nonpregnant mice contains long label-retaining epithelial cells (LREC) that divide asymmetrically and retain their template DNA strands. The role of LREC during alveogenesis has not been determined.

View Article and Find Full Text PDF

A fundamental issue in stem cell biology is whether adult somatic stem cells are capable of accessing alternate tissue sites and continue functioning as stem cells in the new microenvironment. To address this issue relative to neurogenic stem cells in the mouse mammary gland microenvironment, we mixed wild-type mammary epithelial cells (MECs) with bona fide neural stem cells (NSCs) isolated from WAP-Cre/Rosa26R mice and inoculated them into cleared fat pads of immunocompromised females. Hosts were bred 6-8 weeks later and examined postinvolution.

View Article and Find Full Text PDF

Introduction: Int6 has been shown to be an interactive participant with the protein translation initiation complex eIF3, the COP9 signalosome and the regulatory lid of the 26S proteasome. Insertion of mouse mammary tumor virus into the Int6 locus creates a C-terminally truncated form of the protein. Expression of the truncated form of Int6 (Int6sh) in stably transfected human and mouse mammary epithelial cell lines leads to cellular transformation.

View Article and Find Full Text PDF

We have previously described pluripotent, parity-induced mammary epithelial cells (PI-MEC) marked by Rosa26-lacZ expression in the mammary glands of parous females. PI-MEC act as lobule-limited epithelial stem/progenitor cells. To determine whether parity is necessary to generate PI-MEC, we incubated mammary explant cultures from virgin mice in vitro with insulin alone (I), hydrocortisone alone (H), prolactin alone (Prl), or a combination of these lactogenic hormones (IHPrl).

View Article and Find Full Text PDF

Previously, we characterized a parity-induced mammary epithelial cell population that possessed the properties of pluripotency and self-renewal upon transplantation. These cells were lineally marked by the expression of beta-galactosidase (LacZ) as a result of mammary-specific activation of a reporter gene through Cre-lox recombination during pregnancy. We used this experimental model to determine whether testicular cells would alter their cell fate upon interaction with the mammary gland microenvironment during pregnancy, lactation, and involution.

View Article and Find Full Text PDF

A parity-induced mammary population, marked by beta-galactosidase expression conditionally activated through cre-lox recombinase originates in WAP-Cre/Rosa-lox-STOP-lox-LacZ (WAP-Cre/Rosa-LacZ) female mice during pregnancy, lactation and involution. During subsequent pregnancies, these parity-induced mammary epithelial cells (PI-MEC) proliferated to produce new secretory acini composed of secretory luminal cells and myoepithelium. In serial transplantation assays, PI-MEC were able to self-renew over several transplant generations and to contribute significantly to the resulting mammary outgrowths.

View Article and Find Full Text PDF