Publications by authors named "Corinna Thiel"

Cell types that are important for cardiovascular research, e.g., cardiomyocytes, endothelial cells, or adult stem cells, are often hard to isolate, culture, and transfect.

View Article and Find Full Text PDF

The use of transfection in the study of the biology of malaria parasites has been limited due to poor transfection efficiencies (frequency of 10(-6) to 10(-9)) and a paucity of selection markers. Here, a new method of transfection, using non-viral Nucleofector technology, is described for the rodent parasite Plasmodium berghei. The transfection efficiency obtained (episomal and targeted integration into the genome) is in the range of 10(-2) to 10(-3).

View Article and Find Full Text PDF

To study the mechanisms by which missense mutations in alpha-tropomyosin cause familial hypertrophic cardiomyopathy, we generated transgenic rats overexpressing alpha-tropomyosin with one of two disease-causing mutations, Asp(175)Asn or Glu(180)Gly, and analyzed phenotypic changes at molecular, morphological, and physiological levels. The transgenic proteins were stably integrated into the sarcomere, as shown by immunohistochemistry using a human-specific anti-alpha-tropomyosin antibody, ARG1. In transgenic rats with either alpha-tropomyosin mutation, molecular markers of cardiac hypertrophy were induced.

View Article and Find Full Text PDF

Non-viral gene transfer into neurons has proved to be a formidable task. Here, we describe an electroporation-based method that allows efficient and reliable DNA transfer into dissociated neural cells before they are plated and cultured. In hippocampal neural cells derived from either neonatal mouse or embryonic chicken brains, a high transfection rate was already observed 5 h after transfection, and reached 40-80% in 24 h, as monitored by expression of enhanced green fluorescent protein (eGFP).

View Article and Find Full Text PDF

Natural killer (NK) cells are important mediators of virus- and tumor-specific immune responses. The transfection of genes into NK cells has been proven difficult and so far requires infection with virus-based vectors. Here, the application of a novel nonviral, electroporation-based gene transfer method is described for the rapid and highly efficient transient transfection of NK cell lines as well as freshly isolated NK cells.

View Article and Find Full Text PDF