Publications by authors named "Corinna Mauth"

Polyethylene glycol hydrogels (PEG) have been used as slow release carrier for osteoinductive growth factors in order to achieve a retarded delivery. However, there have been concerns about negative effects on bone regeneration. This study aims to test whether PEG hydrogels themselves affect new bone formation (NBF), when used as a carrier during mandibular augmentation procedures.

View Article and Find Full Text PDF

Aim: To test the hypothesis that a synthetic hydroxyapatite/β-tricalcium phosphate (HA/TCP) construct combined with polyethylene glycol (PEG) hydrogel including recombinant human bone morphogenetic proteins-2 (rhBMP-2) enhances new bone formation compared with bone morphogenetic proteins-2 (BMP-2) delivered using the HA/TCP construct alone.

Material And Methods: Bilateral mandibular partial thickness 20 × 8 × 8 mm (L × W × H) alveolar defects were surgically created in the edentulated posterior mandible in 18 female minipigs. Randomized into two groups of nine animals each, the alveolar defects either received HA/TCP or HA/TCP/PEG with or without BMP-2 (105 μg/defect) in contra-lateral sites using a split-mouth design.

View Article and Find Full Text PDF

This in vitro study examined (a) the anti-bacterial efficacy of a pulsed erbium-doped yttrium aluminum garnet (Er:YAG) laser applied to Streptococcus sanguinis or Porphyromonas gingivalis adhered to either polished or microstructured titanium implant surfaces, (b) the response of osteoblast-like cells and (c) adhesion of oral bacteria to titanium surfaces after laser irradiation. Thereto, (a) bacteria adhered to titanium disks were irradiated with a pulsed Er:YAG laser (λ = 2,940 nm) at two different power settings: a lower mode (12.74 J/cm(2) calculated energy density) and a higher mode (63.

View Article and Find Full Text PDF

Herein we describe the use of peptide linkers to establish a nucleic acid-based immobilization system based on biphasic calcium phosphates (BCP), with which different molecules can be immobilized at the same time in defined ratios. It consists of single-stranded oligonucleotides, anchor strands (AS) which are immobilized to the surface and conjugates of complementary strands (CS) and bioactive molecules that bind to the AS via Watson-Crick base pairing. AS immobilization can be achieved on calcium phosphate ceramics using conjugates of AS and peptides that bind specifically to the ceramic.

View Article and Find Full Text PDF

For clinicians, soft connective tissue integration (STI), one of the critical issues for dental implant success, is usually tested using the fibroblasts monolayer regime. Therefore, we aimed at an extension of this regime by employing interactive gingival fibroblast-keratinocyte cocultures (CCs) as an in vivo-like test platform. In the extended regime, 13 STI-relevant genes were analyzed in response to five different titanium implant biomaterial surfaces.

View Article and Find Full Text PDF

In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points.

View Article and Find Full Text PDF

Dental implants are prone to bacterial colonization which may result in bone destruction and implant loss. Treatments of peri-implant disease aim to reduce bacterial adherence while leaving the implant surface intact for attachment of bone-regenerating host cells. The aims of this study were to investigate the antimicrobial efficacy of gaseous ozone on bacteria adhered to various titanium and zirconia surfaces and to evaluate adhesion of osteoblast-like MG-63 cells to ozone-treated surfaces.

View Article and Find Full Text PDF

The influence of oxygen on neural stem cell proliferation, differentiation, and apoptosis is of great interest for regenerative therapies in neurodegenerative disorders, such as Parkinson's disease. These oxygen depending mechanisms have to been considered for the optimization of neural cell culture conditions. In this study, we used a cell culture system with an oxygen-permeable polytetrafluorethylene (PTFE) foil to investigate the effect of oxygen on metabolism and survival of neural cell lines in vitro.

View Article and Find Full Text PDF

Glass-ceramics featuring special properties can be used as a basis to develop biomaterials. It is generally differentiated between highly durable biomaterials for restorative dental applications and bioactive glass-ceramics for medical use, for example, bone replacements. In detail, this paper presents one biomaterial from each of these two groups of materials.

View Article and Find Full Text PDF