Publications by authors named "Corinna Kollath"

Stable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices.

View Article and Find Full Text PDF

We develop an approach to describe the Dicke transition of interacting many-particle systems strongly coupled to the light of a lossy cavity. A mean-field approach is combined with a perturbative treatment of fluctuations beyond mean field, which becomes exact in the thermodynamic limit. These fluctuations completely change the nature of the steady state, determine the thermal character of the transition, and lead to universal properties of the emerging self-organized states.

View Article and Find Full Text PDF

We investigate the full quantum evolution of ultracold interacting bosonic atoms on a chain and coupled to an optical cavity. Extending the time-dependent matrix product state techniques and the many-body adiabatic elimination technique to capture the global coupling to the cavity mode and the open nature of the cavity, we examine the long time behavior of the system beyond the mean-field elimination of the cavity field. We investigate the many-body steady states and the self-organization transition for a wide range of parameters.

View Article and Find Full Text PDF

An isolated quantum gas with a localized loss features a nonmonotonic behavior of the particle loss rate as an incarnation of the quantum Zeno effect, as recently shown in experiments with cold atomic gases. While this effect can be understood in terms of local, microscopic physics, we show that novel many-body effects emerge when nonlinear gapless quantum fluctuations become important. To this end, we investigate the effect of a local dissipative impurity on a one-dimensional gas of interacting fermions.

View Article and Find Full Text PDF

We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence.

View Article and Find Full Text PDF

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy.

View Article and Find Full Text PDF

We propose how a fermionic quantum gas confined to an optical lattice and coupled to an optical cavity can self-organize into a state where the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying chiral currents. The feedback mechanism via the dynamical cavity field enables robust and fast switching in time of the chiral phases, and the cavity output can be employed for a direct nondestructive measurement of the chiral current.

View Article and Find Full Text PDF

We use two-time correlation functions to study the complex dynamics of dissipative many-body quantum systems. In order to measure, understand, and categorize these correlations we extend the framework of the adiabatic elimination method. We show that, for the same parameters and times, two-time correlations can display two distinct behaviors depending on the observable considered: a fast exponential decay or a much slower dynamics.

View Article and Find Full Text PDF

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power law with distance with an exponent given by the adiabatic approximation.

View Article and Find Full Text PDF

We study the dynamics of a strongly interacting bosonic quantum gas in an optical lattice potential under the effect of a dissipative environment. We show that the interplay between the dissipative process and the Hamiltonian evolution leads to an unconventional dynamical behavior of local number fluctuations. In particular, we show, both analytically and numerically, the emergence of an anomalous diffusive evolution in configuration space at short times and, at long times, an unconventional dynamics dominated by rare events.

View Article and Find Full Text PDF

Thermoelectric effects, such as the generation of a particle current by a temperature gradient, have their origin in a reversible coupling between heat and particle flows. These effects are fundamental probes for materials and have applications to cooling and power generation. Here, we demonstrate thermoelectricity in a fermionic cold atoms channel in the ballistic and diffusive regimes, connected to two reservoirs.

View Article and Find Full Text PDF

We study how the interplay of dissipation and interactions affects the dynamics of a bosonic many-body quantum system. In the presence of both dissipation and strongly repulsive interactions, observables such as the coherence and the density fluctuations display three dynamical regimes: an initial exponential variation followed by a power-law regime, and finally a slow exponential convergence to their asymptotic values. These very long-time scales arise as dissipation forces the population of states disfavored by interactions.

View Article and Find Full Text PDF

We analyze the effects of different coupling anisotropies in a spin-1/2 ladder on the electron spin resonance (ESR) shift. Combining a perturbative expression in the anisotropies with density matrix renormalization group computation of the short range correlations at finite temperature, we provide the full temperature and magnetic field evolution of the ESR paramagnetic shift. We show that for well chosen parameters the ESR shift can be in principle used to extract quantitatively the anisotropies and, as an example, discuss the material BPCB.

View Article and Find Full Text PDF
Article Synopsis
  • In relativistic quantum field theory, information is limited to the speed of light, whereas in non-relativistic systems, information can propagate faster, although real systems often show finite propagation speeds due to short-range interactions.
  • Previous studies have established the Lieb-Robinson bound, indicating a maximal velocity for spreading correlations in many-body systems, creating an effective light cone that restricts how fast these correlations can propagate.
  • This research presents experimental evidence of propagating correlations in a one-dimensional quantum gas, demonstrating that quasiparticle pairs can transport correlations with a finite velocity, which has significant implications for understanding quantum systems and improving quantum computing techniques.
View Article and Find Full Text PDF

We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system.

View Article and Find Full Text PDF

We consider the question of thermalization for isolated quantum systems after a sudden parameter change, a so-called quantum quench. In particular, we investigate the prerequisites for thermalization, focusing on the statistical properties of the time-averaged density matrix and of the expectation values of observables in the final eigenstates. We find that eigenstates, which are rare compared to the typical ones sampled by the microcanonical distribution, are responsible for the absence of thermalization of some infinite integrable models and play an important role for some nonintegrable systems of finite size, such as the Bose-Hubbard model.

View Article and Find Full Text PDF

We perform a theoretical study of a fermionic gas with two hyperfine states confined to an optical lattice. We derive a generic state diagram as a function of interaction strength, particle number, and confining potential. We discuss the central density, the double occupancy, and their derivatives as probes for the Mott state, connecting our findings to the recent experiment of Jördens et al.

View Article and Find Full Text PDF

We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium.

View Article and Find Full Text PDF

We investigate the influence of different interaction strengths and dimerizations on the magnetization transport in antiferromagnetic spin 1/2 XXZ chains. We focus on the real-time evolution of the inhomogeneous initial state |upward arrow..

View Article and Find Full Text PDF