Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) governs stage-specific interactions with different cellular machines. The CTD consists of YSPTSPS heptad repeats and sequential phosphorylations of Ser7, Ser5 and Ser2 occur universally at Pol II-transcribed genes. Phosphorylation of Thr4, however, appears to selectively modulate transcription of specific classes of genes.
View Article and Find Full Text PDFDespite the approval of several molecular therapies in the last years, breast cancer-associated death ranks as the second highest in women. This is due to metastatic disease, which represents a challenge for treatment. A better understanding of the molecular mechanisms of metastasis is, therefore, of paramount importance.
View Article and Find Full Text PDFThe carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of YSPTSPS heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes.
View Article and Find Full Text PDFDynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1.
View Article and Find Full Text PDFDynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD.
View Article and Find Full Text PDFPhosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2013
The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript.
View Article and Find Full Text PDFIn different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103.
View Article and Find Full Text PDFEukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells.
View Article and Find Full Text PDFThe estrogen receptor-α (ERα) determines the phenotype of breast cancers where it serves as a positive prognostic indicator. ERα is a well-established target for breast cancer therapy, but strategies to target its function remain of interest to address therapeutic resistance and further improve treatment. Recent findings indicate that proteasome inhibition can regulate estrogen-induced transcription, but how ERα function might be regulated was uncertain.
View Article and Find Full Text PDFRecent work has shown that RNA polymerase (Pol) II can be recruited to and transcribe distal regulatory regions. Here we analyzed transcription initiation and elongation through genome-wide localization of Pol II, general transcription factors (GTFs) and active chromatin in developing T cells. We show that Pol II and GTFs are recruited to known T cell-specific enhancers.
View Article and Find Full Text PDFIn higher eukaryotes, an unusual C-terminal domain (CTD) is crucial to the function of RNA polymerase II in transcription. The CTD consists of multiple heptapeptide repeats; differences in the number of repeats between organisms and their degree of conservation have intrigued researchers for two decades. Here, we review the evolution of the CTD at the molecular level.
View Article and Find Full Text PDF