Publications by authors named "Corinna Dawid"

The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) techniques enable the generation of molecular maps from complex and heterogeneous matrices. A burger patty, whether plant-based or meat-based, represents one such complex matrix where studying the spatial distribution of components can unveil crucial features relevant to the consumer experience or production process. Furthermore, the MSI data can aid in the classification of ingredients and composition.

View Article and Find Full Text PDF

The study focuses on the comprehensive analysis of glutamyl dipeptides in cheese, particularly their formation during the cheese ripening process and the influence of various factors, such as origin, the use of various mold cultures, and cheese types. For the first time, all three subgroups of glutamyl dipeptides, namely α-Glu-X, X-Glu, and γ-Glu-X, are covered in a comprehensive analytical LC-MS/MS method offering robust quantitation of all 56 glutamyl dipeptides. The workflow includes a simplified extraction protocol and an optimized separation of the analytes on the stationary phase.

View Article and Find Full Text PDF

Some germination is known to occur during the process of fermentation in cocoa beans. The impact of this biological process on the course of cocoa fermentation is not known and was thus investigated. In order to determine the impact of germination at the molecular level as well as on flavor, an untargeted metabolomics approach using Ultra Performance Liquid Chromatography-Electrospray Ionization-Time of Flight-Mass Spectrometry (UPLC-ESI-ToF-MS) with simultaneous acquisition of low- and high-collision energy mass spectra (MS) was performed.

View Article and Find Full Text PDF

A recently published untargeted metabolomics approach toward marker compounds of cocoa germination revealed and identified 12-hydroxyjasmonic acid sulfate, (+)-catechin, and (-)-epicatechin as the most downregulated compounds and two hydroxymethylglutaryl glucosides (HMG gluc) A and B, among others, as the decisive upregulated compounds in the germinated material. These findings were quantitatively evaluated using ultrahigh-performance liquid chromatography-tandem mass spectrometry not only in previously examined sample material but also in a vastly expanded array of cocoa samples of different provenience and process and in cocoa products such as cocoa liquor and chocolate. Hereby, yields of newly identified HMG gluc derivatives could be determined in raw, fermented, germinated, and alternatively processed cocoa, and isomers of HMG gluc A and B could be established as key process indicators.

View Article and Find Full Text PDF

A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl -butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics.

View Article and Find Full Text PDF

Italian saffron ( L.) is gaining visibility due to its high quality and difference in growing area. In this study, the metabolite composition and quality of Italian saffron samples purchased from local producers and supermarkets were investigated using an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectrometry (MS).

View Article and Find Full Text PDF

A sensitive high-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-MS/MS) method, leveraging both technique and internal calibration, was developed for the simultaneous and comprehensive quantitative analysis of 46 antioxidants and antioxidant precursors in different beer types without any cleanup procedure. Combined with their antioxidant activity, a dose-activity estimation exposed a group of 10 key antioxidants, namely, tryptophan, tyrosine, hordatine A, hordatine B, procyanidin B, prodelphinidin B, tachioside (3-methoxy-4-hydroxyphenyl-β-d-glucopyranoside), (+)-catechin, tyrosol, and ferulic acid. To study the effect of antioxidants in spiking and aging studies, another liquid chromatography-MS (LC-MS)-based method was developed, monitoring markers for oxidation in beer.

View Article and Find Full Text PDF

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.

View Article and Find Full Text PDF

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as , , , , and were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles.

View Article and Find Full Text PDF

Beyond the key bitter compound kaempferol 3--(2‴--sinapoyl-β-d-sophoroside) previously described in the literature (), eight further bitter and astringent-tasting kaempferol glucosides (-) have been identified in rapeseed protein isolates ( L.). The bitterness and astringency of these taste-active substances have been described with taste threshold concentrations ranging from 3.

View Article and Find Full Text PDF

Several compounds with taste-modulating properties have been investigated, improving the taste impression without having a pronounced intrinsic taste. The best-known representatives of umami taste-modulating compounds are ribonucleotides and their derivatives. Especially the thio derivatives showed high taste-modulating potential in structure-activity relationship investigations.

View Article and Find Full Text PDF

The application of high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) revealed the origin and evolution of antioxidants during the brewing process of hopped and unhopped reference beer. As tachioside (3-methoxy-4-hydroxyphenyl-β-d-glucopyranoside), arbutin (4-hydroxyphenyl-β-d-glucopyranoside), and hordatines clearly increased during the fermentation step, the raw material barley was investigated as a source of the corresponding precursors. Therefore, 4-hydroxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside, and 4-hydroxy-2-methoxyphenyl-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside were isolated from barley for the first time, and identified using liquid chromatography-mass spectrometry (LC-MS) and one-dimensional/two-dimensional-nuclear magnetic resonance (1D/2D-NMR) experiments.

View Article and Find Full Text PDF

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated.

View Article and Find Full Text PDF

As a traditional Thai condiment, is used to add flavor and richness to dishes. Nine treatment combinations of formulations created from 3 types of fish (Mor fish, Kradee fish, and Mor + Kradee fish) and 4 different carbohydrate sources (none, rice bran, roasted rice, and rice bran─roasted rice mixture) were studied through a 12 month fermentation period (1, 3, 5, 7, 8, 9, 10, 11, and 12 months). 16S rRNA Next Generation Sequencing (NGS) and LC-MS/MS techniques were used to analyze the microbial diversity and identify taste-enhancing peptides.

View Article and Find Full Text PDF

Scope: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated.

Methods And Results: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.

View Article and Find Full Text PDF

In order to characterize red wine polymers with regard to their binding properties to aroma compounds (odorants), a qualitative and quantitative analysis of chemical degradation products after different chemical treatments (thiolytic, acidic, and alkaline depolymerization) of high -molecular-weight (HMW) fractions of red wine was performed. Using H NMR, LC-ToF-MS, LC-MS/MS, and HPIC revealed key structural features such as carbohydrates, organic acids, phenolic compounds, anthocyanins, anthocyanidins, amino acids, and flavan-3-ols responsible for odorant-polymer interactions. Further, NMR-based interaction studies of the selected aroma compounds 3-methylbutanol, -whisky lactone, 3-methylbutanoic acid, and 3-isobutyl-2-methoxypyrazine with HMW polymers after chemical treatment demonstrated a reduced interaction affinity of the polymer compared to the native HMW fractions, and further, the importance of aromatic compounds such as flavan-3-ols for the formation of odorant polymer interactions.

View Article and Find Full Text PDF

This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides.

View Article and Find Full Text PDF

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations.

View Article and Find Full Text PDF

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium () is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition.

View Article and Find Full Text PDF

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment.

View Article and Find Full Text PDF

Plants employ a multilayered immune system to combat pathogens. In one layer, recognition of Pathogen- or Microbe-Associated Molecular Patterns or elicitors, triggers a cascade that leads to defence against the pathogen and Pattern Triggered Immunity. Secondary or specialised metabolites (SMs) are expected to play a role, because they are potentially anti-fungal compounds.

View Article and Find Full Text PDF

A balanced flavor is a major quality attribute of orange juice. Formation of 4-vinylguaiacol during storage can lead to an undesirable clove-like off-flavor. However, clove-like off-flavors were occasionally reported despite low 4-vinylguaiacol concentrations, suggesting an alternative molecular background.

View Article and Find Full Text PDF