The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts.
View Article and Find Full Text PDFDespite extensive efforts, extracting information on medication exposure from clinical records remains challenging. To complement this approach, we developed the tandem mass spectrometry (MS/MS) based GNPS Drug Library. This resource integrates MS/MS data for drugs and their metabolites/analogs with controlled vocabularies on exposure sources, pharmacologic classes, therapeutic indications, and mechanisms of action.
View Article and Find Full Text PDFFeature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices.
View Article and Find Full Text PDFUntargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
October 2024
Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion.
View Article and Find Full Text PDFIn this work, trapped ion mobility spectrometry (TIMS) was introduced to facilitate tandem mass spectrometry (MS) experiments for laser desorption/ionization-mass spectrometry (LDI-MS) as mobility-resolved fragmentation. The mobility separation of desorbed ions was followed by subsequent fragmentation using data-independent broadband collision-induced dissociation (bbCID) or targeted fragmentation through a prototypic version of parallel reaction monitoring-parallel accumulation serial fragmentation (prm-PASEF) for LDI. Both mobility-resolved fragmentation options, TIMS-bbCID and prm-PASEF, were applied to LDI point measurements to identify organic pigments in tattoo inks.
View Article and Find Full Text PDFTattooing has become increasingly popular throughout society. Despite the recognized issue of adverse reactions in tattoos, regulations remain challenging with limited data available and a missing positive list. The diverse chemical properties of mostly insoluble inorganic and organic pigments pose an outstanding analytical challenge, which typically requires extensive sample preparation.
View Article and Find Full Text PDF