The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity.
View Article and Find Full Text PDFThe resurgence of whooping cough since the introduction of acellular (protein) vaccines has led to a renewed interest in the development of improved pertussis vaccines; Outer Membrane Vesicles (OMVs) carrying pertussis antigens have emerged as viable candidates. An immunogenicity screen was carried out on 49 well-known proteins in order to better understand their potential role toward the efficacy of pertussis OMVs for vaccine design; seven proteins were identified as being good candidates for including in optimized cellular and acellular pertussis vaccines. We then screened these antigens for putative tolerance-inducing sequences, as proteins with reduced tolerogenicity have improved vaccine potency in preclinical models.
View Article and Find Full Text PDFHum Vaccin Immunother
February 2016
New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens.
View Article and Find Full Text PDFBackground: The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor.
View Article and Find Full Text PDFLeptin is a key factor in the regulation of food intake and is an important factor in the pathophysiology of obesity. However, more than a decade after the discovery of leptin in mouse, information regarding leptin in any nonmammalian species is still scant. We report the identification of duplicate leptin genes in common carp (Cyprinus carpio).
View Article and Find Full Text PDFThe class-I helical cytokines constitute a large group of signalling molecules that play key roles in a plethora of physiological processes including host defence, immune regulation, somatic growth, reproduction, food intake and energy metabolism, regulation of neural growth and many more. Despite little primary amino acid sequence similarity, the view that all contemporary class-I helical cytokines have expanded from a single ancestor is widely accepted, as all class-I helical cytokines share a similar three-dimensional fold, signal via related class-I helical cytokine receptors and activate similar intracellular signalling cascades. Virtually all of our knowledge on class-I helical cytokine signalling derives from research on primate and rodent species.
View Article and Find Full Text PDFInterleukin-12 (IL-12) is the founding member of a rapidly growing family of heterodimeric cytokines. It consists of two subunits, designated p35 and p40 that together constitute a disulphide-linked heterodimeric cytokine. IL-12 is well known for its prominent role in both the early innate immune response and the skewing of the ensuing acquired immune response towards Th1.
View Article and Find Full Text PDFInterleukin-11 (IL-11) is a key cytokine in the regulation of proliferation and differentiation of hematopoietic progenitors and is also involved in bone formation, adipogenesis, and protection of mucosal epithelia. Despite this prominent role in diverse physiological processes, IL-11 has been described in only four mammalian species, and recently, in rainbow trout (Oncorhynchus mykiss). Here we report the presence of IL-11 in common carp (Cyprinus carpio), a bony fish species related to zebrafish.
View Article and Find Full Text PDFThe 16 African 'large' barb fish species of Lake Tana inhabit different ecological niches, exploit different food webs and have different temporal and spatial spawning patterns within the lake. This unique fish species flock is thought to be the result of adaptive radiation within the past 5 million years. Previous analyses of major histocompatibility class II B exon 2 sequences in four Lake Tana African large barb species revealed that these sequences are indeed under selection.
View Article and Find Full Text PDFIt has become increasingly clear over the course of the past decade that the immune system genes of teleosts and tetrapods are plainly derived from common ancestral genes. The last 5 years, however, have also made it abundantly clear that in the teleost genome some of these genes are organized in a manner very different from that seen in mammals. These differences are probably the result of differences in life history traits, such as fecundancy, within each group of species when faced with an evolutionary fork in the road shortly after their divergence from each other.
View Article and Find Full Text PDFExpression of too many co-dominant major histocompatibility complex (MHC) alleles is thought to be detrimental to proper functioning of the immune system. Polyploidy of the genome will increase the number of expressed MHC genes unless they are prone to a silencing mechanism. In polyploid Xenopus species, the number of MHC class I and II genes has been physically reduced, as it does not increase with higher ploidy genomes.
View Article and Find Full Text PDFThe mammalian CXC chemokine system comprises 16 ligands and six receptors, and its actions stretch well beyond the immune system. Recent elucidation of the pufferfish genome, a representative of an evolutionary ancient vertebrate class, has enabled analysis of the mammalian CXC chemokine system in a phylogenetic context. Comparison of the phylogenies of vertebrate CXC chemokines revealed that fish and mammals have found different solutions to similar problems, grafted on the same basic structural motif.
View Article and Find Full Text PDFSpecies from all major jawed vertebrate taxa possess linked polymorphic class I and II genes located in an MHC. The bony fish are exceptional with class I and II genes located on different linkage groups. Zebrafish (Danio rerio), common carp (Cyprinus carpio), and barbus (Barbus intermedius) represent highly divergent cyprinid genera.
View Article and Find Full Text PDF