BMC Pharmacol Toxicol
October 2017
Phosphodiesterase 10A (PDE10A) is a dual substrate PDE that can hydrolyze both cGMP and cAMP. In brain, PDE10A is almost exclusively expressed in the striatum. In several studies, PDE10A has been implicated in regulation of striatal output using either specific inhibitors or PDE10A knock-out mice and has been suggested as a promising target for novel antipsychotic drugs.
View Article and Find Full Text PDFThe NO/cGMP signalling cascade participates in the regulation of physiological parameters such as smooth muscle relaxation, inhibition of platelet aggregation, and neuronal transmission. cGMP is formed in response to nitric oxide (NO) by NO-sensitive guanylyl cyclases that exist in two isoforms (NO-GC1 and NO-GC2). Much has been learned about the regulation of NO-GC; however the precise role of cGMP in complex physiological and especially in pathophysiological settings and its alteration by biological factors needs to be established.
View Article and Find Full Text PDFThe most recently identified cyclic nucleotide phosphodiesterases, PDE10 and PDE11, contain a tandem of so-called GAF domains in their N-terminal regulatory regions. In PDE2 and PDE5, the GAF domains mediate cGMP stimulation; however, their function in PDE10 and PDE11 remains controversial. Although the GAF domains of PDE10 mediate cAMP-induced stimulation of chimeric adenylyl cyclases, cAMP binding did not stimulate the PDE10 holoenzyme.
View Article and Find Full Text PDFThe cGMP-stimulated PDE2A hydrolyzes both cyclic nucleotides, cGMP and cAMP. Three splice variants have been cloned from several species. Whereas PDE2A1 is soluble, PDE2A2 and PDE2A3 are membrane-bound enzymes of rat and bovine origin, respectively.
View Article and Find Full Text PDFThe intracellular signalling molecule cGMP regulates a variety of physiological processes, and so the ability to monitor cGMP dynamics in living cells is highly desirable. Here, we report a systematic approach to create FRET (fluorescence resonance energy transfer)-based cGMP indicators from two known types of cGMP-binding domains which are found in cGMP-dependent protein kinase and phosphodiesterase 5, cNMP-BD [cyclic nucleotide monophosphate-binding domain and GAF [cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA] respectively. Interestingly, only cGMP-binding domains arranged in tandem configuration as in their parent proteins were cGMP-responsive.
View Article and Find Full Text PDF