Publications by authors named "Corina Mihaela Ionescu"

Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems.

View Article and Find Full Text PDF

Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both and research.

View Article and Find Full Text PDF

Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions.

View Article and Find Full Text PDF

Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research.

View Article and Find Full Text PDF

The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models.

View Article and Find Full Text PDF

Inner ear delivery requires safe and effective drug delivery vehicles incorporating high-viscosity formulations with permeation enhancers. This study designs novel thermoresponsive-smart polymer-bile acid and cyclodextrin-based nanogels for inner ear delivery. Nanogels are examined for their rheological and physical properties.

View Article and Find Full Text PDF

Excessive free radicals contribute to oxidative stress and mitochondrial dysfunction in sensorineural hearing loss (SNHL). The antioxidant probucol holds promise, but its limited bioavailability and inner ear barriers hinder effective SNHL treatment. We addressed this by developing probucol-loaded nanoparticles with polymers and lithocholic acid and tested them on House Ear Institute-Organ of Corti cells.

View Article and Find Full Text PDF

The novel hydrogel systems made from sodium alginate, pectin, beta-cyclodextrin and deoxycholic acid (DCA) were proposed as potential drug-delivery matrices. To ensure biocompatibility, rheological parameters were examined and hydrogels' effects on bioenergetic parameters and cellular viability on murine hepatic, and muscle and pancreatic beta cells. All hydrogels show non-Newtonian, shear thinning behavior.

View Article and Find Full Text PDF

The aim of this study is to test the biocompatibility of hydrogels with polysaccharides and bile acids on three murine cell lines. Novel hydrogels containing poloxamer 407, polysaccharides (starch, pectin, acacia, carboxymethyl and methyl 2-hydroxyethyl cellulose) and deoxycholic acid were prepared using cold method, sterilized and used in biological assays to determine effects on hepatic, muscle, and pancreatic beta cells. Hydrogels with deoxycholic acid had tissue-depending effects on cellular survival and bioenergetics, resulting in the best cellular viability and bioenergetics within pancreatic beta cells.

View Article and Find Full Text PDF

Cellular bioactivity and pathophysiological changes associated with chronic disorders are considered pivotal detrimental factors when developing novel formulations for biomedical applications. This paper investigates the use of bile acids and synthetic polypeptide poly-L-ornithine (PLO) in formulations and their impacts on a variety of cell lines, with a particular focus on their cellular bioactivity. The hepatic cell line was the most negatively affected by the presence of PLO, while the muscle and beta-pancreatic cell lines did not show as profound of a negative impact of PLO on cellular viability.

View Article and Find Full Text PDF

Hearing loss is a condition that may affect a wide array of patients from various backgrounds. There are no cures for sensorineural hearing loss. Gene therapy is one possible method of improving hearing status; however, gene delivery remains challenging.

View Article and Find Full Text PDF

Deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are bile acids that may serve as permeation enhancers when incorporated within the nanogel matrix for drug delivery in the inner ear. In this study, thermoresponsive nanogels were formulated with DCA, LCA and UDCA and their rheological properties and biocompatibility were assessed. The impact of nanogel on cellular viability was evaluated via cell viability assay, the impact of nanogels on cellular bioenergetic parameters was estimated by Seahorse mito-stress test and glycolysis-stress test, while the presence of intracellular free radicals was assessed by reactive oxygen species assay.

View Article and Find Full Text PDF

Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes.

View Article and Find Full Text PDF

Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA.

View Article and Find Full Text PDF

Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants.

View Article and Find Full Text PDF

Hearing loss impacts a large proportion of the global population. Damage to the inner ear, in particular the sensitive hair cells, can impact individuals for the rest of their lives. There are very limited options for interventions after damage to these cells has occurred.

View Article and Find Full Text PDF

Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties.

View Article and Find Full Text PDF

The biocompatibility and effects on cells' bioactivity of developed pharmaceuticals are crucial properties, required to permit their safe delivery. Nanogel matrices offer a promising role in emerging pharmaceutics; however, it is crucial that they and their excipients do not demonstrate detrimental effects on the cells to which they interact. This study investigated the use of Teflon and the secondary bile acid deoxycholic acid in the formation of novel nanogel matrices.

View Article and Find Full Text PDF

Recent preclinical studies in our laboratory have shown that the bile acid profile is altered during diabetes development and such alteration has been linked to the diabetes-associated inflammatory profile. Hence, this study aimed to investigate if the first-line antidiabetic drug metformin will alter the bile acid profile and diabetes-associated inflammation in a murine model of pre-type 2 diabetes. C57 mice were randomly allocated into three equal groups of eight.

View Article and Find Full Text PDF

The pathophysiology of a multitude of diseases is influenced by bioenergetic dysfunction. Healthy mitochondria are presented as essential for the regulation and function of multiple cell types, including the cells of relevance for this research: pancreatic beta cells, muscle cells, and liver cells. Hence, effects of hydrogels (particularly nanogels) on bioenergetics needs to be taken into account when designing optimum delivery matrices.

View Article and Find Full Text PDF

Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated.

View Article and Find Full Text PDF

Biguanides, particularly the widely prescribed drug metformin, have been marketed for many decades and have well-established absorption profiles. They are commonly administered via the oral route and, despite variation in oral uptake, remain commonly prescribed for diabetes mellitus, typically type 2. Studies over the last decade have focused on the design and development of advanced oral delivery dosage forms using bio nano technologies and novel drug carrier systems.

View Article and Find Full Text PDF

Recent studies in our laboratories have shown promising effects of bile acids in ➀ drug encapsulation for oral targeted delivery (via capsule stabilization) particularly when encapsulated with Eudragit NM30D and ➁ viable-cell encapsulation and delivery (via supporting cell viability and biological activities, postencapsulation). Accordingly, this study aimed to investigate applications of bile acid-Eudragit NM30D capsules in viable-cell encapsulation ready for delivery. Mouse-cloned pancreatic β-cell line was cultured and cells encapsulated using bile acid-Eudragit NM30D capsules, and capsules' images, viability, inflammation, and bioenergetics of encapsulated cells assessed.

View Article and Find Full Text PDF

A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA).

View Article and Find Full Text PDF