Publications by authors named "Corina Duda Seiman"

DNA analysis plays a crucial role in forensic investigations, helping in criminal cases, missing persons inquiries, and archaeological research. This study focuses on the DNA concentration in different skeletal elements to improve human identification efforts. Ten cases of unidentified skeletal remains brought to the Institute of Forensic Medicine in Timisoara, Romania, underwent DNA analysis between 2019 and 2023.

View Article and Find Full Text PDF

Zr-based metal-organic framework materials (Zr-MOFs) with increased specific surface area and pore volume were obtained using chemical (two materials, and ) and solvothermal () synthesis methods and investigated via FT-IR spectroscopy, TGA, SANS, PXRD, and SEM methods. The difference between and lies in the addition of reactants during synthesis. Nitrogen porosimetry data indicated the presence of pores with average dimensions of ~4 nm; using SANS, the average size of the nanocrystals was suggested to be approximately 30 nm.

View Article and Find Full Text PDF

Human papillomavirus types 16 and 18 cause the majority of cervical cancers worldwide. Despite the availability of three prophylactic vaccines based on virus-like particles (VLP) of the major capsid protein (L1), these vaccines are unable to clear an existing infection. Such infected persons experience an increased risk of neoplastic transformation.

View Article and Find Full Text PDF

Background: During the current SARS-CoV-2 pandemic, the identification of effective antiviral drugs is crucial. Unfortunately, no specific treatment or vaccine is available to date.

Objective: Here, we aimed to predict the interactions with SARS-CoV-2 proteins and protein targets from the human body for some flavone molecules (kaempferol, morin, pectolinarin, myricitrin, and herbacetin) in comparison to synthetic compounds (hydroxychloroquine, remdesivir, ribavirin, ritonavir, AMD-070, favipiravir).

View Article and Find Full Text PDF

In the context of reconsidering the Quantitative Structure-Activity Relationship (QSAR) methods at the economical level, namely the optimization rules of OECD, the present review unfolds the key features of Minimal Sterical, Monte-Carlo and Minimal Topological Difference (MTD) methods, developed for quantitative treatment of the relations between biological activity of organic chemical compounds (drugs, pesticides, and so on) and their structures. The initial Minimal Steric Difference (MSD) is completed by the three-dimensional variant of the MTD method, being the last one referred to here, while the main principles of validating and guiding a viable QSAR method verified by the analytical-automated MTD, thus enlarging the perspectives of understanding the chemical-biological interaction at the level of ligand-receptor sites, cavity, and walls, with a true service to the future adaptive molecular design.

View Article and Find Full Text PDF

Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies.

View Article and Find Full Text PDF

Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions.

View Article and Find Full Text PDF

Calcium channel blockers (CCB) are widely used in cardiovascular medicine expressing high hopes upon decreasing cardiovascular risk, morbidity and mortality. Here, the potency of CCBs on 58 Romanian asymptomatic hypertensive patients, with no atherothrombotic cardiovascular disease, was studied by clinical and in silico methods. In our study, arterial elasticity/stiffness was assessed; anthropometric, metabolic (lipidic) parameters were quantified.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosome segregation accuracy in normal cells relies on mitosis mechanics and the spindle assembly checkpoint (SAC) proteins, particularly Mad1 and Mad2.
  • Mad1 and Mad2 are essential for preventing incorrect cell divisions that lead to aneuploidy, which can trigger genetic disorders and cancer development.
  • Research into the structural and functional details of SAC proteins highlights that even small changes in Mad1 and Mad2 can cause aneuploidy, suggesting potential new avenues for genetic medicine.
View Article and Find Full Text PDF

Xanthine-based molecules such as serine protease dipeptidyl peptidase 4 (DPP4) inhibitors are compounds often used in improving glycemic control in type 2 diabetic patients and also used for their effects as mild stimulants and as bronchodilators, notably in treating asthma symptoms. Here, we aim to better understand the molecular features affecting activity of xanthine-based DPP4 inhibitors such as sitagliptin and related compounds and use these features to de novo predict improved sitagliptin derivatives. To this end, we performed a clinical study to examine the efficacy and safety of once-daily 100 mg oral sitagliptin as monotherapy in Romanian patients with type 2 diabetes.

View Article and Find Full Text PDF

The classical method of quantitative structure-activity relationships (QSAR) is enriched using non-linear models, as Thom's polynomials allow either uni- or bi-variate structural parameters. In this context, catastrophe QSAR algorithms are applied to the anti-HIV-1 activity of pyridinone derivatives. This requires calculation of the so-called relative statistical power and of its minimum principle in various QSAR models.

View Article and Find Full Text PDF

Antidepressants are psychiatric agents used for the treatment of different types of depression being at present amongst the most commonly prescribed drug, while their effectiveness and adverse effects are the subject of many studies and competing claims. Having studied five QSAR models predicting the biological activities of 18 antidepressants, already approved for clinical treatment, in interaction with the serotonin transporter (SERT), we attempted to establish the membrane ionsâ contributions (sodium, potassium, chlorine and calcium) supplied by donor/acceptor hydrogen bond character and electrostatic field to the antidepressant activity. Significant cross-validated correlation q(2) (0.

View Article and Find Full Text PDF