The installation of fluorine and fluorinated functional groups in organic molecules perturbs the physicochemical properties of those molecules and enables the development of new therapeutics, agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access some fluorinated functional groups and fluorinated scaffolds. One such group, the -difluorobenzyl motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic -difluoroalkene.
View Article and Find Full Text PDFA data mining approach to discover and develop new organic nonlinear optical crystals that produce intense pulses of terahertz radiation is demonstrated. The Cambridge Structural Database is mined for non-centrosymmetric materials and these structural data are used in tandem with density functional theory calculations to predict new materials that efficiently generate terahertz radiation. This enables us to (in a relatively short time) discover, synthesize, and grow large, high-quality crystals of four promising materials and characterize them for intense terahertz generation.
View Article and Find Full Text PDFWe report the synthesis of a 2-phosphinoimidazole-derived bimetallic Rh(II) complex that enables intramolecular allene hydroamination to form 7- to 10-member rings in high yield. Monometallic Rh complexes, in contrast, fail to achieve any product formation. We demonstrate a broad substrate scope for formation of various -heterocycles.
View Article and Find Full Text PDF