Amyloid fibrils are a large class of self-assembled protein aggregates that are formed from unstructured peptides and unfolded proteins. The fibrils are characterized by a universal β-sheet core stabilized by hydrogen bonds, but the molecular structure of the peptide subunits exposed on the fibril surface is variable. Here we show that multimodal spectroscopy using a range of bulk- and surface-sensitive techniques provides a powerful way to dissect variations in the molecular structure of polymorphic amyloid fibrils.
View Article and Find Full Text PDFType 2 diabetes mellitus is characterized by the pathological deposition of fibrillized protein, known as amyloids. It is thought that oligomers and/or amyloid fibrils formed from human islet amyloid polypeptide (hIAPP or amylin) cause cell death by membrane damage. The molecular structure of hIAPP amyloid fibrils is dominated by β-sheet structure, as probed with conventional infrared and Raman vibrational spectroscopy.
View Article and Find Full Text PDFAdhesion G protein-coupled receptors (aGPCRs) are two-subunit molecules, consisting of an adhesive extracellular α subunit that couples noncovalently to a seven-transmembrane β subunit. The cooperation between the two subunits and the effect of endogenous ligands on the functioning of aGPCRs is poorly understood. In this study, we investigated the interaction between the pan-leukocyte aGPCR CD97 and its ligand CD55.
View Article and Find Full Text PDFAge-related diseases, like Alzheimer's disease and type 2 diabetes mellitus, are characterized by protein misfolding and the subsequent pathological deposition of fibrillized protein, also called amyloid. Several classes of amyloid-inhibitors have recently been tested, traditionally under bulk conditions. However, it has become apparent that amyloid fibrils and oligomers assemble and exert their cytotoxic effect at cellular membranes, rather than in bulk solution.
View Article and Find Full Text PDFThe formation of amyloid fibrils is a self-assembly process of peptides or proteins. The superior mechanical properties of these fibrils make them interesting for materials science but constitute a problem in amyloid-related diseases. Amyloid structures tend to be polymorphic, and their structure depends on growth conditions.
View Article and Find Full Text PDF