This publication details the successful use of FBDD (fragment-based drug discovery) principles in the invention of a novel covalent Bruton's tyrosine kinase inhibitor, which ultimately became the Takeda Pharmaceuticals clinical candidate TAK-020. Described herein are the discovery of the fragment 5-phenyl-2,4-dihydro-3-1,2,4-triazol-3-one, the subsequent optimization of this hit molecule to the candidate, and synthesis and performance in pharmacodynamic and efficacy models along with direct biophysical comparison of TAK-020 with other clinical-level assets and the marketed drug Ibrutinib.
View Article and Find Full Text PDFSpleen Tyrosine Kinase (SYK) is a non-receptor cytoplasmic tyrosine kinase that is primarily expressed in hematopoietic cells. SYK is a key mediator for a variety of inflammatory cells, including B cells, mast cells, macrophages and neutrophils and therefore, an attractive approach for treatment of both inflammatory diseases and oncology indications. Using in house co-crystal structure information, and structure-based drug design, we designed and optimized a novel series of heteroaromatic pyrrolidinone SYK inhibitors resulting in the selection of the development candidate TAK-659.
View Article and Find Full Text PDFThe discovery and optimization of a series of 4-aminocinnoline-3-carboxamide inhibitors of Bruton's tyrosine kinase are reported. A fragment-based screening approach incorporating X-ray co-crystallography was used to identify a cinnoline fragment and characterize its binding mode in the ATP binding site of Btk. Optimization of the fragment hit resulted in the identification of a lead compound which reduced paw swelling in a dose- and exposure-dependent fashion in a rat model of collagen-induced arthritis.
View Article and Find Full Text PDF