Publications by authors named "Corey Reynolds"

We are 52 Black scientists. Here, we establish the context of Juneteenth in STEMM and discuss the barriers Black scientists face, the struggles they endure, and the lack of recognition they receive. We review racism's history in science and provide institutional-level solutions to reduce the burdens on Black scientists.

View Article and Find Full Text PDF

Introduction: Chagas disease, caused by chronic infection with the protozoan parasite Trypanosoma cruzi, affects 6-7 million people worldwide. The major clinical manifestation of Chagas disease is chronic Chagasic cardiomyopathy (CCC), which encompasses a spectrum of symptoms including arrhythmias, hypertrophy, dilated cardiomyopathy, heart failure, and sudden death. Current treatment is limited to two antiparasitic drugs, benznidazole (BNZ) and nifurtimox, but both have limited efficacy to halt the progression of CCC.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic factors underlying congenital heart disease by screening nearly 3,900 mouse gene mutations for cardiac issues, finding 705 lines with conditions like arrhythmia and myocardial hypertrophy.
  • - Out of these, 486 genes are newly linked to heart dysfunction, including variants of unknown relevance (VUR), with specific mutations in five genes (Casz1, Dnajc18, Pde4dip, Rnf38, Tmem161b) leading to notable structural heart defects.
  • - Using data from the UK Biobank, the research further confirms the role of the DNAJC18 gene in heart function, highlighting its loss as linked to changes in cardiac performance, thus identifying new potential targets for understanding
View Article and Find Full Text PDF

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a chronic infantile lung disease that lacks curative therapies. Infants with BPD-associated PH are often exposed to hyperoxia and additional insults such as sepsis that contribute to disease pathogenesis. Animal models that simulate these scenarios are necessary to develop effective therapies; therefore, we investigated whether lipopolysaccharide (LPS) and hyperoxia exposure during saccular lung development cooperatively induce experimental BPD-PH in mice.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a significant lung morbidity of infants, and disrupted lung angiogenesis is a hallmark of this disease. We observed that extracellular signal-regulated kinases (ERK) 1/2 support angiogenesis in vitro, and hyperoxia activates ERK1/2 in fetal human pulmonary microvascular endothelial cells (HPMECs) and in neonatal murine lungs; however, their role in experimental BPD and PH is unknown. Therefore, we hypothesized that Cre-mediated deficiency of in the endothelial cells of neonatal murine lungs would potentiate hyperoxia-induced BPD and PH.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear.

View Article and Find Full Text PDF

Background Chronic chagasic cardiomyopathy (CCC), caused by infection, is an important public health problem attributable to progressive cardiomyopathy in patients, for which there is no cure. Chronic chagasic cardiomyopathy is characterized by myocarditis and cardiac fibrosis, which leads to life-threatening arrhythmogenic and circulatory abnormalities. This study aimed to investigate cardiac fibrosis progression in a mouse model of chronic chagasic cardiomyopathy.

View Article and Find Full Text PDF
Article Synopsis
  • High-throughput phenomic projects often deal with complex data from various treatment and control groups, which can complicate analyses due to variations over time, necessitating a method to effectively use local controls to enhance analytic accuracy.
  • The authors present 'soft windowing', a method that assigns weighted importance to control data based on their proximity in time to mutant data, leading to reduced false positives (10%) in analyses and increased significant P-values (30%).
  • This method is implemented in an R package called SmoothWin, which is publicly accessible and can also be applied to large-scale human phenomic studies such as the UK Biobank.
View Article and Find Full Text PDF

Inbred mouse strains are the most widely used mammalian model organism in biomedical research owing to ease of genetic manipulation and short lifespan; however, each inbred strain possesses a unique repertoire of deleterious homozygous alleles that can make a specific strain more susceptible to a particular disease. In the current study, we report dystrophic cardiac calcinosis (DCC) in C.B-17 SCID male mice at 10 weeks of age with no significant change in cardiac function.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF.

View Article and Find Full Text PDF

Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) frequently occurs in infants with bronchopulmonary dysplasia (BPD), causing increased mortality and right ventricular (RV) dysfunction that persists into adulthood. A first step in developing better therapeutic options is identifying and characterizing an appropriate animal model. Previously, we characterized the short-term morbidities of a model in which C57BL/6J wild-type (WT) mice were exposed to 70% O (hyperoxia) during the neonatal period.

View Article and Find Full Text PDF

High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis.

View Article and Find Full Text PDF

Although next-generation sequencing has revolutionized the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by a lack of knowledge of the functions and pathobiological mechanisms of most genes. To address this challenge, the International Mouse Phenotyping Consortium is creating a genome- and phenome-wide catalog of gene function by characterizing new knockout-mouse strains across diverse biological systems through a broad set of standardized phenotyping tests. All mice will be readily available to the biomedical community.

View Article and Find Full Text PDF

Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca transient, resting cytosolic Ca levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production.

View Article and Find Full Text PDF

Ultrasonography is a powerful tool to non-invasively monitor in real time the development of the human fetus in utero. Although genetically engineered mice have served as valuable in vivo models to study both embryo implantation and pregnancy progression, such studies usually require sacrifice of parous mice for subsequent phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction in silico of high-frequency ultrasound (HFUS) imaging data for early detection and characterization of murine embryo implantation sites and their development in utero.

View Article and Find Full Text PDF

Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expression of steroid receptor coactivator-1 protein in mouse brain, especially in regions implicated in the regulation of blood pressure.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) and chronic obstructive pulmonary disease (COPD) are chronic lung diseases of human infants and adults, respectively, that are characterized by alveolar simplification. One-third of the infants with severe BPD develop pulmonary hypertension (PH). More importantly, PH increases morbidity and mortality in BPD patients.

View Article and Find Full Text PDF

Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in female mice lacking estrogen receptor-α in the brain medial amygdala.

View Article and Find Full Text PDF

The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD.

View Article and Find Full Text PDF

The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were developed to address the lack of reproducibility in biomedical animal studies and improve the communication of research findings. While intended to guide the preparation of peer-reviewed manuscripts, the principles of transparent reporting are also fundamental for in vivo databases. Here, we describe the benefits and challenges of applying the guidelines for the International Mouse Phenotyping Consortium (IMPC), whose goal is to produce and phenotype 20,000 knockout mouse strains in a reproducible manner across ten research centres.

View Article and Find Full Text PDF

Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis.

View Article and Find Full Text PDF

TWIK-2 (KCNK6) is a member of the 2-pore domain (K2P) family of potassium channels, which are highly expressed in the vascular system. We tested the hypothesis that TWIK-2 deficiency leads to pulmonary hypertension. TWIK-2 knockout mice and their wildtype littermates at 8 weeks of age had similar mean right ventricular systolic pressures (24±3 and 21±3 mm Hg, respectively.

View Article and Find Full Text PDF