Understanding the controls on the amount and persistence of soil organic carbon (C) is essential for predicting its sensitivity to global change. The response may depend on whether C is unprotected, isolated within aggregates, or protected from decomposition by mineral associations. Here, we present a global synthesis of the relative influence of environmental factors on soil organic C partitioning among pools, abundance in each pool (mg C g soil), and persistence (as approximated by radiocarbon abundance) in relatively unprotected particulate and protected mineral-bound pools.
View Article and Find Full Text PDFHigh-latitude warming is capable of accelerating permafrost degradation and the decomposition of previously frozen carbon. The existence of an analogous high-altitude feedback, however, has yet to be directly evaluated. We address this knowledge gap by coupling a radiocarbon-based model to 7 years (2008-2014) of continuous eddy covariance data from a snow-scoured alpine tundra meadow in Colorado, USA, where solifluction lobes are associated with discontinuous permafrost.
View Article and Find Full Text PDFSoil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices.
View Article and Find Full Text PDF